⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dgbtrf.f.html

📁 famous linear algebra library (LAPACK) ports to windows
💻 HTML
📖 第 1 页 / 共 3 页
字号:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
 <head>
  <title>dgbtrf.f</title>
 <meta name="generator" content="emacs 21.3.1; htmlfontify 0.20">
<style type="text/css"><!-- 
body { background: rgb(255, 255, 255);  color: rgb(0, 0, 0);  font-style: normal;  font-weight: 500;  font-stretch: normal;  font-family: adobe-courier;  font-size: 11pt;  text-decoration: none; }
span.default   { background: rgb(255, 255, 255);  color: rgb(0, 0, 0);  font-style: normal;  font-weight: 500;  font-stretch: normal;  font-family: adobe-courier;  font-size: 11pt;  text-decoration: none; }
span.default a { background: rgb(255, 255, 255);  color: rgb(0, 0, 0);  font-style: normal;  font-weight: 500;  font-stretch: normal;  font-family: adobe-courier;  font-size: 11pt;  text-decoration: underline; }
span.string   { color: rgb(188, 143, 143);  background: rgb(255, 255, 255);  font-style: normal;  font-weight: 500;  font-stretch: normal;  font-family: adobe-courier;  font-size: 11pt;  text-decoration: none; }
span.string a { color: rgb(188, 143, 143);  background: rgb(255, 255, 255);  font-style: normal;  font-weight: 500;  font-stretch: normal;  font-family: adobe-courier;  font-size: 11pt;  text-decoration: underline; }
span.comment   { color: rgb(178, 34, 34);  background: rgb(255, 255, 255);  font-style: normal;  font-weight: 500;  font-stretch: normal;  font-family: adobe-courier;  font-size: 11pt;  text-decoration: none; }
span.comment a { color: rgb(178, 34, 34);  background: rgb(255, 255, 255);  font-style: normal;  font-weight: 500;  font-stretch: normal;  font-family: adobe-courier;  font-size: 11pt;  text-decoration: underline; }
 --></style>

 </head>
  <body>

<pre>
      SUBROUTINE <a name="DGBTRF.1"></a><a href="dgbtrf.f.html#DGBTRF.1">DGBTRF</a>( M, N, KL, KU, AB, LDAB, IPIV, INFO )
<span class="comment">*</span><span class="comment">
</span><span class="comment">*</span><span class="comment">  -- LAPACK routine (version 3.1) --
</span><span class="comment">*</span><span class="comment">     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
</span><span class="comment">*</span><span class="comment">     November 2006
</span><span class="comment">*</span><span class="comment">
</span><span class="comment">*</span><span class="comment">     .. Scalar Arguments ..
</span>      INTEGER            INFO, KL, KU, LDAB, M, N
<span class="comment">*</span><span class="comment">     ..
</span><span class="comment">*</span><span class="comment">     .. Array Arguments ..
</span>      INTEGER            IPIV( * )
      DOUBLE PRECISION   AB( LDAB, * )
<span class="comment">*</span><span class="comment">     ..
</span><span class="comment">*</span><span class="comment">
</span><span class="comment">*</span><span class="comment">  Purpose
</span><span class="comment">*</span><span class="comment">  =======
</span><span class="comment">*</span><span class="comment">
</span><span class="comment">*</span><span class="comment">  <a name="DGBTRF.18"></a><a href="dgbtrf.f.html#DGBTRF.1">DGBTRF</a> computes an LU factorization of a real m-by-n band matrix A
</span><span class="comment">*</span><span class="comment">  using partial pivoting with row interchanges.
</span><span class="comment">*</span><span class="comment">
</span><span class="comment">*</span><span class="comment">  This is the blocked version of the algorithm, calling Level 3 BLAS.
</span><span class="comment">*</span><span class="comment">
</span><span class="comment">*</span><span class="comment">  Arguments
</span><span class="comment">*</span><span class="comment">  =========
</span><span class="comment">*</span><span class="comment">
</span><span class="comment">*</span><span class="comment">  M       (input) INTEGER
</span><span class="comment">*</span><span class="comment">          The number of rows of the matrix A.  M &gt;= 0.
</span><span class="comment">*</span><span class="comment">
</span><span class="comment">*</span><span class="comment">  N       (input) INTEGER
</span><span class="comment">*</span><span class="comment">          The number of columns of the matrix A.  N &gt;= 0.
</span><span class="comment">*</span><span class="comment">
</span><span class="comment">*</span><span class="comment">  KL      (input) INTEGER
</span><span class="comment">*</span><span class="comment">          The number of subdiagonals within the band of A.  KL &gt;= 0.
</span><span class="comment">*</span><span class="comment">
</span><span class="comment">*</span><span class="comment">  KU      (input) INTEGER
</span><span class="comment">*</span><span class="comment">          The number of superdiagonals within the band of A.  KU &gt;= 0.
</span><span class="comment">*</span><span class="comment">
</span><span class="comment">*</span><span class="comment">  AB      (input/output) DOUBLE PRECISION array, dimension (LDAB,N)
</span><span class="comment">*</span><span class="comment">          On entry, the matrix A in band storage, in rows KL+1 to
</span><span class="comment">*</span><span class="comment">          2*KL+KU+1; rows 1 to KL of the array need not be set.
</span><span class="comment">*</span><span class="comment">          The j-th column of A is stored in the j-th column of the
</span><span class="comment">*</span><span class="comment">          array AB as follows:
</span><span class="comment">*</span><span class="comment">          AB(kl+ku+1+i-j,j) = A(i,j) for max(1,j-ku)&lt;=i&lt;=min(m,j+kl)
</span><span class="comment">*</span><span class="comment">
</span><span class="comment">*</span><span class="comment">          On exit, details of the factorization: U is stored as an
</span><span class="comment">*</span><span class="comment">          upper triangular band matrix with KL+KU superdiagonals in
</span><span class="comment">*</span><span class="comment">          rows 1 to KL+KU+1, and the multipliers used during the
</span><span class="comment">*</span><span class="comment">          factorization are stored in rows KL+KU+2 to 2*KL+KU+1.
</span><span class="comment">*</span><span class="comment">          See below for further details.
</span><span class="comment">*</span><span class="comment">
</span><span class="comment">*</span><span class="comment">  LDAB    (input) INTEGER
</span><span class="comment">*</span><span class="comment">          The leading dimension of the array AB.  LDAB &gt;= 2*KL+KU+1.
</span><span class="comment">*</span><span class="comment">
</span><span class="comment">*</span><span class="comment">  IPIV    (output) INTEGER array, dimension (min(M,N))
</span><span class="comment">*</span><span class="comment">          The pivot indices; for 1 &lt;= i &lt;= min(M,N), row i of the
</span><span class="comment">*</span><span class="comment">          matrix was interchanged with row IPIV(i).
</span><span class="comment">*</span><span class="comment">
</span><span class="comment">*</span><span class="comment">  INFO    (output) INTEGER
</span><span class="comment">*</span><span class="comment">          = 0: successful exit
</span><span class="comment">*</span><span class="comment">          &lt; 0: if INFO = -i, the i-th argument had an illegal value
</span><span class="comment">*</span><span class="comment">          &gt; 0: if INFO = +i, U(i,i) is exactly zero. The factorization
</span><span class="comment">*</span><span class="comment">               has been completed, but the factor U is exactly
</span><span class="comment">*</span><span class="comment">               singular, and division by zero will occur if it is used
</span><span class="comment">*</span><span class="comment">               to solve a system of equations.
</span><span class="comment">*</span><span class="comment">
</span><span class="comment">*</span><span class="comment">  Further Details
</span><span class="comment">*</span><span class="comment">  ===============
</span><span class="comment">*</span><span class="comment">
</span><span class="comment">*</span><span class="comment">  The band storage scheme is illustrated by the following example, when
</span><span class="comment">*</span><span class="comment">  M = N = 6, KL = 2, KU = 1:
</span><span class="comment">*</span><span class="comment">
</span><span class="comment">*</span><span class="comment">  On entry:                       On exit:
</span><span class="comment">*</span><span class="comment">
</span><span class="comment">*</span><span class="comment">      *    *    *    +    +    +       *    *    *   u14  u25  u36
</span><span class="comment">*</span><span class="comment">      *    *    +    +    +    +       *    *   u13  u24  u35  u46
</span><span class="comment">*</span><span class="comment">      *   a12  a23  a34  a45  a56      *   u12  u23  u34  u45  u56
</span><span class="comment">*</span><span class="comment">     a11  a22  a33  a44  a55  a66     u11  u22  u33  u44  u55  u66
</span><span class="comment">*</span><span class="comment">     a21  a32  a43  a54  a65   *      m21  m32  m43  m54  m65   *
</span><span class="comment">*</span><span class="comment">     a31  a42  a53  a64   *    *      m31  m42  m53  m64   *    *
</span><span class="comment">*</span><span class="comment">
</span><span class="comment">*</span><span class="comment">  Array elements marked * are not used by the routine; elements marked
</span><span class="comment">*</span><span class="comment">  + need not be set on entry, but are required by the routine to store
</span><span class="comment">*</span><span class="comment">  elements of U because of fill-in resulting from the row interchanges.
</span><span class="comment">*</span><span class="comment">
</span><span class="comment">*</span><span class="comment">  =====================================================================
</span><span class="comment">*</span><span class="comment">
</span><span class="comment">*</span><span class="comment">     .. Parameters ..
</span>      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
      INTEGER            NBMAX, LDWORK
      PARAMETER          ( NBMAX = 64, LDWORK = NBMAX+1 )
<span class="comment">*</span><span class="comment">     ..
</span><span class="comment">*</span><span class="comment">     .. Local Scalars ..
</span>      INTEGER            I, I2, I3, II, IP, J, J2, J3, JB, JJ, JM, JP,
     $                   JU, K2, KM, KV, NB, NW
      DOUBLE PRECISION   TEMP
<span class="comment">*</span><span class="comment">     ..
</span><span class="comment">*</span><span class="comment">     .. Local Arrays ..
</span>      DOUBLE PRECISION   WORK13( LDWORK, NBMAX ),
     $                   WORK31( LDWORK, NBMAX )
<span class="comment">*</span><span class="comment">     ..
</span><span class="comment">*</span><span class="comment">     .. External Functions ..
</span>      INTEGER            IDAMAX, <a name="ILAENV.103"></a><a href="hfy-index.html#ILAENV">ILAENV</a>
      EXTERNAL           IDAMAX, <a name="ILAENV.104"></a><a href="hfy-index.html#ILAENV">ILAENV</a>
<span class="comment">*</span><span class="comment">     ..
</span><span class="comment">*</span><span class="comment">     .. External Subroutines ..
</span>      EXTERNAL           DCOPY, <a name="DGBTF2.107"></a><a href="dgbtf2.f.html#DGBTF2.1">DGBTF2</a>, DGEMM, DGER, <a name="DLASWP.107"></a><a href="dlaswp.f.html#DLASWP.1">DLASWP</a>, DSCAL,
     $                   DSWAP, DTRSM, <a name="XERBLA.108"></a><a href="xerbla.f.html#XERBLA.1">XERBLA</a>
<span class="comment">*</span><span class="comment">     ..
</span><span class="comment">*</span><span class="comment">     .. Intrinsic Functions ..
</span>      INTRINSIC          MAX, MIN
<span class="comment">*</span><span class="comment">     ..
</span><span class="comment">*</span><span class="comment">     .. Executable Statements ..
</span><span class="comment">*</span><span class="comment">
</span><span class="comment">*</span><span class="comment">     KV is the number of superdiagonals in the factor U, allowing for
</span><span class="comment">*</span><span class="comment">     fill-in
</span><span class="comment">*</span><span class="comment">
</span>      KV = KU + KL
<span class="comment">*</span><span class="comment">
</span><span class="comment">*</span><span class="comment">     Test the input parameters.
</span><span class="comment">*</span><span class="comment">
</span>      INFO = 0
      IF( M.LT.0 ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( KL.LT.0 ) THEN
         INFO = -3
      ELSE IF( KU.LT.0 ) THEN
         INFO = -4
      ELSE IF( LDAB.LT.KL+KV+1 ) THEN
         INFO = -6
      END IF
      IF( INFO.NE.0 ) THEN
         CALL <a name="XERBLA.135"></a><a href="xerbla.f.html#XERBLA.1">XERBLA</a>( <span class="string">'<a name="DGBTRF.135"></a><a href="dgbtrf.f.html#DGBTRF.1">DGBTRF</a>'</span>, -INFO )
         RETURN
      END IF

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -