⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 clarrv.f

📁 famous linear algebra library (LAPACK) ports to windows
💻 F
📖 第 1 页 / 共 3 页
字号:
      SUBROUTINE CLARRV( N, VL, VU, D, L, PIVMIN,
     $                   ISPLIT, M, DOL, DOU, MINRGP,
     $                   RTOL1, RTOL2, W, WERR, WGAP,
     $                   IBLOCK, INDEXW, GERS, Z, LDZ, ISUPPZ,
     $                   WORK, IWORK, INFO )
*
*  -- LAPACK auxiliary routine (version 3.1.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      INTEGER            DOL, DOU, INFO, LDZ, M, N
      REAL               MINRGP, PIVMIN, RTOL1, RTOL2, VL, VU
*     ..
*     .. Array Arguments ..
      INTEGER            IBLOCK( * ), INDEXW( * ), ISPLIT( * ),
     $                   ISUPPZ( * ), IWORK( * )
      REAL               D( * ), GERS( * ), L( * ), W( * ), WERR( * ),
     $                   WGAP( * ), WORK( * )
      COMPLEX           Z( LDZ, * )
*     ..
*
*  Purpose
*  =======
*
*  CLARRV computes the eigenvectors of the tridiagonal matrix
*  T = L D L^T given L, D and APPROXIMATIONS to the eigenvalues of L D L^T.
*  The input eigenvalues should have been computed by SLARRE.
*
*  Arguments
*  =========
*
*  N       (input) INTEGER
*          The order of the matrix.  N >= 0.
*
*  VL      (input) REAL            
*  VU      (input) REAL            
*          Lower and upper bounds of the interval that contains the desired
*          eigenvalues. VL < VU. Needed to compute gaps on the left or right
*          end of the extremal eigenvalues in the desired RANGE.
*
*  D       (input/output) REAL             array, dimension (N)
*          On entry, the N diagonal elements of the diagonal matrix D.
*          On exit, D may be overwritten.
*
*  L       (input/output) REAL             array, dimension (N)
*          On entry, the (N-1) subdiagonal elements of the unit
*          bidiagonal matrix L are in elements 1 to N-1 of L
*          (if the matrix is not splitted.) At the end of each block
*          is stored the corresponding shift as given by SLARRE.
*          On exit, L is overwritten.
*
*  PIVMIN  (in) DOUBLE PRECISION
*          The minimum pivot allowed in the Sturm sequence.
*
*  ISPLIT  (input) INTEGER array, dimension (N)
*          The splitting points, at which T breaks up into blocks.
*          The first block consists of rows/columns 1 to
*          ISPLIT( 1 ), the second of rows/columns ISPLIT( 1 )+1
*          through ISPLIT( 2 ), etc.
*
*  M       (input) INTEGER
*          The total number of input eigenvalues.  0 <= M <= N.
*
*  DOL     (input) INTEGER
*  DOU     (input) INTEGER
*          If the user wants to compute only selected eigenvectors from all
*          the eigenvalues supplied, he can specify an index range DOL:DOU.
*          Or else the setting DOL=1, DOU=M should be applied.
*          Note that DOL and DOU refer to the order in which the eigenvalues
*          are stored in W.
*          If the user wants to compute only selected eigenpairs, then
*          the columns DOL-1 to DOU+1 of the eigenvector space Z contain the
*          computed eigenvectors. All other columns of Z are set to zero.
*
*  MINRGP  (input) REAL            
*
*  RTOL1   (input) REAL            
*  RTOL2   (input) REAL            
*           Parameters for bisection.
*           An interval [LEFT,RIGHT] has converged if
*           RIGHT-LEFT.LT.MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )
*
*  W       (input/output) REAL             array, dimension (N)
*          The first M elements of W contain the APPROXIMATE eigenvalues for
*          which eigenvectors are to be computed.  The eigenvalues
*          should be grouped by split-off block and ordered from
*          smallest to largest within the block ( The output array
*          W from SLARRE is expected here ). Furthermore, they are with
*          respect to the shift of the corresponding root representation
*          for their block. On exit, W holds the eigenvalues of the
*          UNshifted matrix.
*
*  WERR    (input/output) REAL             array, dimension (N)
*          The first M elements contain the semiwidth of the uncertainty
*          interval of the corresponding eigenvalue in W
*
*  WGAP    (input/output) REAL             array, dimension (N)
*          The separation from the right neighbor eigenvalue in W.
*
*  IBLOCK  (input) INTEGER array, dimension (N)
*          The indices of the blocks (submatrices) associated with the
*          corresponding eigenvalues in W; IBLOCK(i)=1 if eigenvalue
*          W(i) belongs to the first block from the top, =2 if W(i)
*          belongs to the second block, etc.
*
*  INDEXW  (input) INTEGER array, dimension (N)
*          The indices of the eigenvalues within each block (submatrix);
*          for example, INDEXW(i)= 10 and IBLOCK(i)=2 imply that the
*          i-th eigenvalue W(i) is the 10-th eigenvalue in the second block.
*
*  GERS    (input) REAL             array, dimension (2*N)
*          The N Gerschgorin intervals (the i-th Gerschgorin interval
*          is (GERS(2*i-1), GERS(2*i)). The Gerschgorin intervals should
*          be computed from the original UNshifted matrix.
*
*  Z       (output) COMPLEX          array, dimension (LDZ, max(1,M) )
*          If INFO = 0, the first M columns of Z contain the
*          orthonormal eigenvectors of the matrix T
*          corresponding to the input eigenvalues, with the i-th
*          column of Z holding the eigenvector associated with W(i).
*          Note: the user must ensure that at least max(1,M) columns are
*          supplied in the array Z.
*
*  LDZ     (input) INTEGER
*          The leading dimension of the array Z.  LDZ >= 1, and if
*          JOBZ = 'V', LDZ >= max(1,N).
*
*  ISUPPZ  (output) INTEGER array, dimension ( 2*max(1,M) )
*          The support of the eigenvectors in Z, i.e., the indices
*          indicating the nonzero elements in Z. The I-th eigenvector
*          is nonzero only in elements ISUPPZ( 2*I-1 ) through
*          ISUPPZ( 2*I ).
*
*  WORK    (workspace) REAL             array, dimension (12*N)
*
*  IWORK   (workspace) INTEGER array, dimension (7*N)
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*
*          > 0:  A problem occured in CLARRV.
*          < 0:  One of the called subroutines signaled an internal problem.
*                Needs inspection of the corresponding parameter IINFO
*                for further information.
*
*          =-1:  Problem in SLARRB when refining a child's eigenvalues.
*          =-2:  Problem in SLARRF when computing the RRR of a child.
*                When a child is inside a tight cluster, it can be difficult
*                to find an RRR. A partial remedy from the user's point of
*                view is to make the parameter MINRGP smaller and recompile.
*                However, as the orthogonality of the computed vectors is
*                proportional to 1/MINRGP, the user should be aware that
*                he might be trading in precision when he decreases MINRGP.
*          =-3:  Problem in SLARRB when refining a single eigenvalue
*                after the Rayleigh correction was rejected.
*          = 5:  The Rayleigh Quotient Iteration failed to converge to
*                full accuracy in MAXITR steps.
*
*  Further Details
*  ===============
*
*  Based on contributions by
*     Beresford Parlett, University of California, Berkeley, USA
*     Jim Demmel, University of California, Berkeley, USA
*     Inderjit Dhillon, University of Texas, Austin, USA
*     Osni Marques, LBNL/NERSC, USA
*     Christof Voemel, University of California, Berkeley, USA
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            MAXITR
      PARAMETER          ( MAXITR = 10 )
      COMPLEX            CZERO
      PARAMETER          ( CZERO = ( 0.0E0, 0.0E0 ) )
      REAL               ZERO, ONE, TWO, THREE, FOUR, HALF
      PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0,
     $                     TWO = 2.0E0, THREE = 3.0E0,
     $                     FOUR = 4.0E0, HALF = 0.5E0)
*     ..
*     .. Local Scalars ..
      LOGICAL            ESKIP, NEEDBS, STP2II, TRYRQC, USEDBS, USEDRQ
      INTEGER            DONE, I, IBEGIN, IDONE, IEND, II, IINDC1,
     $                   IINDC2, IINDR, IINDWK, IINFO, IM, IN, INDEIG,
     $                   INDLD, INDLLD, INDWRK, ISUPMN, ISUPMX, ITER,
     $                   ITMP1, J, JBLK, K, MINIWSIZE, MINWSIZE, NCLUS,
     $                   NDEPTH, NEGCNT, NEWCLS, NEWFST, NEWFTT, NEWLST,
     $                   NEWSIZ, OFFSET, OLDCLS, OLDFST, OLDIEN, OLDLST,
     $                   OLDNCL, P, PARITY, Q, WBEGIN, WEND, WINDEX,
     $                   WINDMN, WINDPL, ZFROM, ZTO, ZUSEDL, ZUSEDU,
     $                   ZUSEDW
      INTEGER            INDIN1, INDIN2
      REAL               BSTRES, BSTW, EPS, FUDGE, GAP, GAPTOL, GL, GU,
     $                   LAMBDA, LEFT, LGAP, MINGMA, NRMINV, RESID,
     $                   RGAP, RIGHT, RQCORR, RQTOL, SAVGAP, SGNDEF,
     $                   SIGMA, SPDIAM, SSIGMA, TAU, TMP, TOL, ZTZ
*     ..
*     .. External Functions ..
      REAL               SLAMCH
      EXTERNAL           SLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           CLAR1V, CLASET, CSSCAL, SCOPY, SLARRB,
     $                   SLARRF
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC ABS, REAL, MAX, MIN
      INTRINSIC CMPLX
*     ..
*     .. Executable Statements ..
*     ..

*     The first N entries of WORK are reserved for the eigenvalues
      INDLD = N+1
      INDLLD= 2*N+1
      INDIN1 = 3*N + 1
      INDIN2 = 4*N + 1
      INDWRK = 5*N + 1
      MINWSIZE = 12 * N

      DO 5 I= 1,MINWSIZE
         WORK( I ) = ZERO
 5    CONTINUE

*     IWORK(IINDR+1:IINDR+N) hold the twist indices R for the
*     factorization used to compute the FP vector
      IINDR = 0
*     IWORK(IINDC1+1:IINC2+N) are used to store the clusters of the current
*     layer and the one above.
      IINDC1 = N
      IINDC2 = 2*N
      IINDWK = 3*N + 1

      MINIWSIZE = 7 * N
      DO 10 I= 1,MINIWSIZE
         IWORK( I ) = 0
 10   CONTINUE

      ZUSEDL = 1
      IF(DOL.GT.1) THEN
*        Set lower bound for use of Z
         ZUSEDL = DOL-1
      ENDIF
      ZUSEDU = M
      IF(DOU.LT.M) THEN
*        Set lower bound for use of Z
         ZUSEDU = DOU+1
      ENDIF
*     The width of the part of Z that is used
      ZUSEDW = ZUSEDU - ZUSEDL + 1


      CALL CLASET( 'Full', N, ZUSEDW, CZERO, CZERO,
     $                    Z(1,ZUSEDL), LDZ )

      EPS = SLAMCH( 'Precision' )
      RQTOL = TWO * EPS
*
*     Set expert flags for standard code.
      TRYRQC = .TRUE.

      IF((DOL.EQ.1).AND.(DOU.EQ.M)) THEN
      ELSE
*        Only selected eigenpairs are computed. Since the other evalues
*        are not refined by RQ iteration, bisection has to compute to full
*        accuracy.
         RTOL1 = FOUR * EPS
         RTOL2 = FOUR * EPS
      ENDIF

*     The entries WBEGIN:WEND in W, WERR, WGAP correspond to the
*     desired eigenvalues. The support of the nonzero eigenvector
*     entries is contained in the interval IBEGIN:IEND.
*     Remark that if k eigenpairs are desired, then the eigenvectors
*     are stored in k contiguous columns of Z.

*     DONE is the number of eigenvectors already computed
      DONE = 0
      IBEGIN = 1
      WBEGIN = 1
      DO 170 JBLK = 1, IBLOCK( M )
         IEND = ISPLIT( JBLK )
         SIGMA = L( IEND )
*        Find the eigenvectors of the submatrix indexed IBEGIN
*        through IEND.
         WEND = WBEGIN - 1
 15      CONTINUE
         IF( WEND.LT.M ) THEN
            IF( IBLOCK( WEND+1 ).EQ.JBLK ) THEN
               WEND = WEND + 1
               GO TO 15
            END IF
         END IF
         IF( WEND.LT.WBEGIN ) THEN
            IBEGIN = IEND + 1
            GO TO 170
         ELSEIF( (WEND.LT.DOL).OR.(WBEGIN.GT.DOU) ) THEN
            IBEGIN = IEND + 1
            WBEGIN = WEND + 1
            GO TO 170
         END IF

*        Find local spectral diameter of the block
         GL = GERS( 2*IBEGIN-1 )
         GU = GERS( 2*IBEGIN )

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -