📄 zhgeqz.f
字号:
MAXIT = 30*( IHI-ILO+1 )
*
DO 170 JITER = 1, MAXIT
*
* Check for too many iterations.
*
IF( JITER.GT.MAXIT )
$ GO TO 180
*
* Split the matrix if possible.
*
* Two tests:
* 1: H(j,j-1)=0 or j=ILO
* 2: T(j,j)=0
*
* Special case: j=ILAST
*
IF( ILAST.EQ.ILO ) THEN
GO TO 60
ELSE
IF( ABS1( H( ILAST, ILAST-1 ) ).LE.ATOL ) THEN
H( ILAST, ILAST-1 ) = CZERO
GO TO 60
END IF
END IF
*
IF( ABS( T( ILAST, ILAST ) ).LE.BTOL ) THEN
T( ILAST, ILAST ) = CZERO
GO TO 50
END IF
*
* General case: j<ILAST
*
DO 40 J = ILAST - 1, ILO, -1
*
* Test 1: for H(j,j-1)=0 or j=ILO
*
IF( J.EQ.ILO ) THEN
ILAZRO = .TRUE.
ELSE
IF( ABS1( H( J, J-1 ) ).LE.ATOL ) THEN
H( J, J-1 ) = CZERO
ILAZRO = .TRUE.
ELSE
ILAZRO = .FALSE.
END IF
END IF
*
* Test 2: for T(j,j)=0
*
IF( ABS( T( J, J ) ).LT.BTOL ) THEN
T( J, J ) = CZERO
*
* Test 1a: Check for 2 consecutive small subdiagonals in A
*
ILAZR2 = .FALSE.
IF( .NOT.ILAZRO ) THEN
IF( ABS1( H( J, J-1 ) )*( ASCALE*ABS1( H( J+1,
$ J ) ) ).LE.ABS1( H( J, J ) )*( ASCALE*ATOL ) )
$ ILAZR2 = .TRUE.
END IF
*
* If both tests pass (1 & 2), i.e., the leading diagonal
* element of B in the block is zero, split a 1x1 block off
* at the top. (I.e., at the J-th row/column) The leading
* diagonal element of the remainder can also be zero, so
* this may have to be done repeatedly.
*
IF( ILAZRO .OR. ILAZR2 ) THEN
DO 20 JCH = J, ILAST - 1
CTEMP = H( JCH, JCH )
CALL ZLARTG( CTEMP, H( JCH+1, JCH ), C, S,
$ H( JCH, JCH ) )
H( JCH+1, JCH ) = CZERO
CALL ZROT( ILASTM-JCH, H( JCH, JCH+1 ), LDH,
$ H( JCH+1, JCH+1 ), LDH, C, S )
CALL ZROT( ILASTM-JCH, T( JCH, JCH+1 ), LDT,
$ T( JCH+1, JCH+1 ), LDT, C, S )
IF( ILQ )
$ CALL ZROT( N, Q( 1, JCH ), 1, Q( 1, JCH+1 ), 1,
$ C, DCONJG( S ) )
IF( ILAZR2 )
$ H( JCH, JCH-1 ) = H( JCH, JCH-1 )*C
ILAZR2 = .FALSE.
IF( ABS1( T( JCH+1, JCH+1 ) ).GE.BTOL ) THEN
IF( JCH+1.GE.ILAST ) THEN
GO TO 60
ELSE
IFIRST = JCH + 1
GO TO 70
END IF
END IF
T( JCH+1, JCH+1 ) = CZERO
20 CONTINUE
GO TO 50
ELSE
*
* Only test 2 passed -- chase the zero to T(ILAST,ILAST)
* Then process as in the case T(ILAST,ILAST)=0
*
DO 30 JCH = J, ILAST - 1
CTEMP = T( JCH, JCH+1 )
CALL ZLARTG( CTEMP, T( JCH+1, JCH+1 ), C, S,
$ T( JCH, JCH+1 ) )
T( JCH+1, JCH+1 ) = CZERO
IF( JCH.LT.ILASTM-1 )
$ CALL ZROT( ILASTM-JCH-1, T( JCH, JCH+2 ), LDT,
$ T( JCH+1, JCH+2 ), LDT, C, S )
CALL ZROT( ILASTM-JCH+2, H( JCH, JCH-1 ), LDH,
$ H( JCH+1, JCH-1 ), LDH, C, S )
IF( ILQ )
$ CALL ZROT( N, Q( 1, JCH ), 1, Q( 1, JCH+1 ), 1,
$ C, DCONJG( S ) )
CTEMP = H( JCH+1, JCH )
CALL ZLARTG( CTEMP, H( JCH+1, JCH-1 ), C, S,
$ H( JCH+1, JCH ) )
H( JCH+1, JCH-1 ) = CZERO
CALL ZROT( JCH+1-IFRSTM, H( IFRSTM, JCH ), 1,
$ H( IFRSTM, JCH-1 ), 1, C, S )
CALL ZROT( JCH-IFRSTM, T( IFRSTM, JCH ), 1,
$ T( IFRSTM, JCH-1 ), 1, C, S )
IF( ILZ )
$ CALL ZROT( N, Z( 1, JCH ), 1, Z( 1, JCH-1 ), 1,
$ C, S )
30 CONTINUE
GO TO 50
END IF
ELSE IF( ILAZRO ) THEN
*
* Only test 1 passed -- work on J:ILAST
*
IFIRST = J
GO TO 70
END IF
*
* Neither test passed -- try next J
*
40 CONTINUE
*
* (Drop-through is "impossible")
*
INFO = 2*N + 1
GO TO 210
*
* T(ILAST,ILAST)=0 -- clear H(ILAST,ILAST-1) to split off a
* 1x1 block.
*
50 CONTINUE
CTEMP = H( ILAST, ILAST )
CALL ZLARTG( CTEMP, H( ILAST, ILAST-1 ), C, S,
$ H( ILAST, ILAST ) )
H( ILAST, ILAST-1 ) = CZERO
CALL ZROT( ILAST-IFRSTM, H( IFRSTM, ILAST ), 1,
$ H( IFRSTM, ILAST-1 ), 1, C, S )
CALL ZROT( ILAST-IFRSTM, T( IFRSTM, ILAST ), 1,
$ T( IFRSTM, ILAST-1 ), 1, C, S )
IF( ILZ )
$ CALL ZROT( N, Z( 1, ILAST ), 1, Z( 1, ILAST-1 ), 1, C, S )
*
* H(ILAST,ILAST-1)=0 -- Standardize B, set ALPHA and BETA
*
60 CONTINUE
ABSB = ABS( T( ILAST, ILAST ) )
IF( ABSB.GT.SAFMIN ) THEN
SIGNBC = DCONJG( T( ILAST, ILAST ) / ABSB )
T( ILAST, ILAST ) = ABSB
IF( ILSCHR ) THEN
CALL ZSCAL( ILAST-IFRSTM, SIGNBC, T( IFRSTM, ILAST ), 1 )
CALL ZSCAL( ILAST+1-IFRSTM, SIGNBC, H( IFRSTM, ILAST ),
$ 1 )
ELSE
H( ILAST, ILAST ) = H( ILAST, ILAST )*SIGNBC
END IF
IF( ILZ )
$ CALL ZSCAL( N, SIGNBC, Z( 1, ILAST ), 1 )
ELSE
T( ILAST, ILAST ) = CZERO
END IF
ALPHA( ILAST ) = H( ILAST, ILAST )
BETA( ILAST ) = T( ILAST, ILAST )
*
* Go to next block -- exit if finished.
*
ILAST = ILAST - 1
IF( ILAST.LT.ILO )
$ GO TO 190
*
* Reset counters
*
IITER = 0
ESHIFT = CZERO
IF( .NOT.ILSCHR ) THEN
ILASTM = ILAST
IF( IFRSTM.GT.ILAST )
$ IFRSTM = ILO
END IF
GO TO 160
*
* QZ step
*
* This iteration only involves rows/columns IFIRST:ILAST. We
* assume IFIRST < ILAST, and that the diagonal of B is non-zero.
*
70 CONTINUE
IITER = IITER + 1
IF( .NOT.ILSCHR ) THEN
IFRSTM = IFIRST
END IF
*
* Compute the Shift.
*
* At this point, IFIRST < ILAST, and the diagonal elements of
* T(IFIRST:ILAST,IFIRST,ILAST) are larger than BTOL (in
* magnitude)
*
IF( ( IITER / 10 )*10.NE.IITER ) THEN
*
* The Wilkinson shift (AEP p.512), i.e., the eigenvalue of
* the bottom-right 2x2 block of A inv(B) which is nearest to
* the bottom-right element.
*
* We factor B as U*D, where U has unit diagonals, and
* compute (A*inv(D))*inv(U).
*
U12 = ( BSCALE*T( ILAST-1, ILAST ) ) /
$ ( BSCALE*T( ILAST, ILAST ) )
AD11 = ( ASCALE*H( ILAST-1, ILAST-1 ) ) /
$ ( BSCALE*T( ILAST-1, ILAST-1 ) )
AD21 = ( ASCALE*H( ILAST, ILAST-1 ) ) /
$ ( BSCALE*T( ILAST-1, ILAST-1 ) )
AD12 = ( ASCALE*H( ILAST-1, ILAST ) ) /
$ ( BSCALE*T( ILAST, ILAST ) )
AD22 = ( ASCALE*H( ILAST, ILAST ) ) /
$ ( BSCALE*T( ILAST, ILAST ) )
ABI22 = AD22 - U12*AD21
*
T1 = HALF*( AD11+ABI22 )
RTDISC = SQRT( T1**2+AD12*AD21-AD11*AD22 )
TEMP = DBLE( T1-ABI22 )*DBLE( RTDISC ) +
$ DIMAG( T1-ABI22 )*DIMAG( RTDISC )
IF( TEMP.LE.ZERO ) THEN
SHIFT = T1 + RTDISC
ELSE
SHIFT = T1 - RTDISC
END IF
ELSE
*
* Exceptional shift. Chosen for no particularly good reason.
*
ESHIFT = ESHIFT + DCONJG( ( ASCALE*H( ILAST-1, ILAST ) ) /
$ ( BSCALE*T( ILAST-1, ILAST-1 ) ) )
SHIFT = ESHIFT
END IF
*
* Now check for two consecutive small subdiagonals.
*
DO 80 J = ILAST - 1, IFIRST + 1, -1
ISTART = J
CTEMP = ASCALE*H( J, J ) - SHIFT*( BSCALE*T( J, J ) )
TEMP = ABS1( CTEMP )
TEMP2 = ASCALE*ABS1( H( J+1, J ) )
TEMPR = MAX( TEMP, TEMP2 )
IF( TEMPR.LT.ONE .AND. TEMPR.NE.ZERO ) THEN
TEMP = TEMP / TEMPR
TEMP2 = TEMP2 / TEMPR
END IF
IF( ABS1( H( J, J-1 ) )*TEMP2.LE.TEMP*ATOL )
$ GO TO 90
80 CONTINUE
*
ISTART = IFIRST
CTEMP = ASCALE*H( IFIRST, IFIRST ) -
$ SHIFT*( BSCALE*T( IFIRST, IFIRST ) )
90 CONTINUE
*
* Do an implicit-shift QZ sweep.
*
* Initial Q
*
CTEMP2 = ASCALE*H( ISTART+1, ISTART )
CALL ZLARTG( CTEMP, CTEMP2, C, S, CTEMP3 )
*
* Sweep
*
DO 150 J = ISTART, ILAST - 1
IF( J.GT.ISTART ) THEN
CTEMP = H( J, J-1 )
CALL ZLARTG( CTEMP, H( J+1, J-1 ), C, S, H( J, J-1 ) )
H( J+1, J-1 ) = CZERO
END IF
*
DO 100 JC = J, ILASTM
CTEMP = C*H( J, JC ) + S*H( J+1, JC )
H( J+1, JC ) = -DCONJG( S )*H( J, JC ) + C*H( J+1, JC )
H( J, JC ) = CTEMP
CTEMP2 = C*T( J, JC ) + S*T( J+1, JC )
T( J+1, JC ) = -DCONJG( S )*T( J, JC ) + C*T( J+1, JC )
T( J, JC ) = CTEMP2
100 CONTINUE
IF( ILQ ) THEN
DO 110 JR = 1, N
CTEMP = C*Q( JR, J ) + DCONJG( S )*Q( JR, J+1 )
Q( JR, J+1 ) = -S*Q( JR, J ) + C*Q( JR, J+1 )
Q( JR, J ) = CTEMP
110 CONTINUE
END IF
*
CTEMP = T( J+1, J+1 )
CALL ZLARTG( CTEMP, T( J+1, J ), C, S, T( J+1, J+1 ) )
T( J+1, J ) = CZERO
*
DO 120 JR = IFRSTM, MIN( J+2, ILAST )
CTEMP = C*H( JR, J+1 ) + S*H( JR, J )
H( JR, J ) = -DCONJG( S )*H( JR, J+1 ) + C*H( JR, J )
H( JR, J+1 ) = CTEMP
120 CONTINUE
DO 130 JR = IFRSTM, J
CTEMP = C*T( JR, J+1 ) + S*T( JR, J )
T( JR, J ) = -DCONJG( S )*T( JR, J+1 ) + C*T( JR, J )
T( JR, J+1 ) = CTEMP
130 CONTINUE
IF( ILZ ) THEN
DO 140 JR = 1, N
CTEMP = C*Z( JR, J+1 ) + S*Z( JR, J )
Z( JR, J ) = -DCONJG( S )*Z( JR, J+1 ) + C*Z( JR, J )
Z( JR, J+1 ) = CTEMP
140 CONTINUE
END IF
150 CONTINUE
*
160 CONTINUE
*
170 CONTINUE
*
* Drop-through = non-convergence
*
180 CONTINUE
INFO = ILAST
GO TO 210
*
* Successful completion of all QZ steps
*
190 CONTINUE
*
* Set Eigenvalues 1:ILO-1
*
DO 200 J = 1, ILO - 1
ABSB = ABS( T( J, J ) )
IF( ABSB.GT.SAFMIN ) THEN
SIGNBC = DCONJG( T( J, J ) / ABSB )
T( J, J ) = ABSB
IF( ILSCHR ) THEN
CALL ZSCAL( J-1, SIGNBC, T( 1, J ), 1 )
CALL ZSCAL( J, SIGNBC, H( 1, J ), 1 )
ELSE
H( J, J ) = H( J, J )*SIGNBC
END IF
IF( ILZ )
$ CALL ZSCAL( N, SIGNBC, Z( 1, J ), 1 )
ELSE
T( J, J ) = CZERO
END IF
ALPHA( J ) = H( J, J )
BETA( J ) = T( J, J )
200 CONTINUE
*
* Normal Termination
*
INFO = 0
*
* Exit (other than argument error) -- return optimal workspace size
*
210 CONTINUE
WORK( 1 ) = DCMPLX( N )
RETURN
*
* End of ZHGEQZ
*
END
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -