📄 dstevr.f
字号:
SUBROUTINE DSTEVR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL,
$ M, W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK,
$ LIWORK, INFO )
*
* -- LAPACK driver routine (version 3.1) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
CHARACTER JOBZ, RANGE
INTEGER IL, INFO, IU, LDZ, LIWORK, LWORK, M, N
DOUBLE PRECISION ABSTOL, VL, VU
* ..
* .. Array Arguments ..
INTEGER ISUPPZ( * ), IWORK( * )
DOUBLE PRECISION D( * ), E( * ), W( * ), WORK( * ), Z( LDZ, * )
* ..
*
* Purpose
* =======
*
* DSTEVR computes selected eigenvalues and, optionally, eigenvectors
* of a real symmetric tridiagonal matrix T. Eigenvalues and
* eigenvectors can be selected by specifying either a range of values
* or a range of indices for the desired eigenvalues.
*
* Whenever possible, DSTEVR calls DSTEMR to compute the
* eigenspectrum using Relatively Robust Representations. DSTEMR
* computes eigenvalues by the dqds algorithm, while orthogonal
* eigenvectors are computed from various "good" L D L^T representations
* (also known as Relatively Robust Representations). Gram-Schmidt
* orthogonalization is avoided as far as possible. More specifically,
* the various steps of the algorithm are as follows. For the i-th
* unreduced block of T,
* (a) Compute T - sigma_i = L_i D_i L_i^T, such that L_i D_i L_i^T
* is a relatively robust representation,
* (b) Compute the eigenvalues, lambda_j, of L_i D_i L_i^T to high
* relative accuracy by the dqds algorithm,
* (c) If there is a cluster of close eigenvalues, "choose" sigma_i
* close to the cluster, and go to step (a),
* (d) Given the approximate eigenvalue lambda_j of L_i D_i L_i^T,
* compute the corresponding eigenvector by forming a
* rank-revealing twisted factorization.
* The desired accuracy of the output can be specified by the input
* parameter ABSTOL.
*
* For more details, see "A new O(n^2) algorithm for the symmetric
* tridiagonal eigenvalue/eigenvector problem", by Inderjit Dhillon,
* Computer Science Division Technical Report No. UCB//CSD-97-971,
* UC Berkeley, May 1997.
*
*
* Note 1 : DSTEVR calls DSTEMR when the full spectrum is requested
* on machines which conform to the ieee-754 floating point standard.
* DSTEVR calls DSTEBZ and DSTEIN on non-ieee machines and
* when partial spectrum requests are made.
*
* Normal execution of DSTEMR may create NaNs and infinities and
* hence may abort due to a floating point exception in environments
* which do not handle NaNs and infinities in the ieee standard default
* manner.
*
* Arguments
* =========
*
* JOBZ (input) CHARACTER*1
* = 'N': Compute eigenvalues only;
* = 'V': Compute eigenvalues and eigenvectors.
*
* RANGE (input) CHARACTER*1
* = 'A': all eigenvalues will be found.
* = 'V': all eigenvalues in the half-open interval (VL,VU]
* will be found.
* = 'I': the IL-th through IU-th eigenvalues will be found.
********** For RANGE = 'V' or 'I' and IU - IL < N - 1, DSTEBZ and
********** DSTEIN are called
*
* N (input) INTEGER
* The order of the matrix. N >= 0.
*
* D (input/output) DOUBLE PRECISION array, dimension (N)
* On entry, the n diagonal elements of the tridiagonal matrix
* A.
* On exit, D may be multiplied by a constant factor chosen
* to avoid over/underflow in computing the eigenvalues.
*
* E (input/output) DOUBLE PRECISION array, dimension (max(1,N-1))
* On entry, the (n-1) subdiagonal elements of the tridiagonal
* matrix A in elements 1 to N-1 of E.
* On exit, E may be multiplied by a constant factor chosen
* to avoid over/underflow in computing the eigenvalues.
*
* VL (input) DOUBLE PRECISION
* VU (input) DOUBLE PRECISION
* If RANGE='V', the lower and upper bounds of the interval to
* be searched for eigenvalues. VL < VU.
* Not referenced if RANGE = 'A' or 'I'.
*
* IL (input) INTEGER
* IU (input) INTEGER
* If RANGE='I', the indices (in ascending order) of the
* smallest and largest eigenvalues to be returned.
* 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
* Not referenced if RANGE = 'A' or 'V'.
*
* ABSTOL (input) DOUBLE PRECISION
* The absolute error tolerance for the eigenvalues.
* An approximate eigenvalue is accepted as converged
* when it is determined to lie in an interval [a,b]
* of width less than or equal to
*
* ABSTOL + EPS * max( |a|,|b| ) ,
*
* where EPS is the machine precision. If ABSTOL is less than
* or equal to zero, then EPS*|T| will be used in its place,
* where |T| is the 1-norm of the tridiagonal matrix obtained
* by reducing A to tridiagonal form.
*
* See "Computing Small Singular Values of Bidiagonal Matrices
* with Guaranteed High Relative Accuracy," by Demmel and
* Kahan, LAPACK Working Note #3.
*
* If high relative accuracy is important, set ABSTOL to
* DLAMCH( 'Safe minimum' ). Doing so will guarantee that
* eigenvalues are computed to high relative accuracy when
* possible in future releases. The current code does not
* make any guarantees about high relative accuracy, but
* future releases will. See J. Barlow and J. Demmel,
* "Computing Accurate Eigensystems of Scaled Diagonally
* Dominant Matrices", LAPACK Working Note #7, for a discussion
* of which matrices define their eigenvalues to high relative
* accuracy.
*
* M (output) INTEGER
* The total number of eigenvalues found. 0 <= M <= N.
* If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
*
* W (output) DOUBLE PRECISION array, dimension (N)
* The first M elements contain the selected eigenvalues in
* ascending order.
*
* Z (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M) )
* If JOBZ = 'V', then if INFO = 0, the first M columns of Z
* contain the orthonormal eigenvectors of the matrix A
* corresponding to the selected eigenvalues, with the i-th
* column of Z holding the eigenvector associated with W(i).
* Note: the user must ensure that at least max(1,M) columns are
* supplied in the array Z; if RANGE = 'V', the exact value of M
* is not known in advance and an upper bound must be used.
*
* LDZ (input) INTEGER
* The leading dimension of the array Z. LDZ >= 1, and if
* JOBZ = 'V', LDZ >= max(1,N).
*
* ISUPPZ (output) INTEGER array, dimension ( 2*max(1,M) )
* The support of the eigenvectors in Z, i.e., the indices
* indicating the nonzero elements in Z. The i-th eigenvector
* is nonzero only in elements ISUPPZ( 2*i-1 ) through
* ISUPPZ( 2*i ).
********** Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1
*
* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
* On exit, if INFO = 0, WORK(1) returns the optimal (and
* minimal) LWORK.
*
* LWORK (input) INTEGER
* The dimension of the array WORK. LWORK >= max(1,20*N).
*
* If LWORK = -1, then a workspace query is assumed; the routine
* only calculates the optimal sizes of the WORK and IWORK
* arrays, returns these values as the first entries of the WORK
* and IWORK arrays, and no error message related to LWORK or
* LIWORK is issued by XERBLA.
*
* IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
* On exit, if INFO = 0, IWORK(1) returns the optimal (and
* minimal) LIWORK.
*
* LIWORK (input) INTEGER
* The dimension of the array IWORK. LIWORK >= max(1,10*N).
*
* If LIWORK = -1, then a workspace query is assumed; the
* routine only calculates the optimal sizes of the WORK and
* IWORK arrays, returns these values as the first entries of
* the WORK and IWORK arrays, and no error message related to
* LWORK or LIWORK is issued by XERBLA.
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
* > 0: Internal error
*
* Further Details
* ===============
*
* Based on contributions by
* Inderjit Dhillon, IBM Almaden, USA
* Osni Marques, LBNL/NERSC, USA
* Ken Stanley, Computer Science Division, University of
* California at Berkeley, USA
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE, TWO
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 )
* ..
* .. Local Scalars ..
LOGICAL ALLEIG, INDEIG, TEST, LQUERY, VALEIG, WANTZ,
$ TRYRAC
CHARACTER ORDER
INTEGER I, IEEEOK, IMAX, INDIBL, INDIFL, INDISP,
$ INDIWO, ISCALE, ITMP1, J, JJ, LIWMIN, LWMIN,
$ NSPLIT
DOUBLE PRECISION BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA, SMLNUM,
$ TMP1, TNRM, VLL, VUU
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ILAENV
DOUBLE PRECISION DLAMCH, DLANST
EXTERNAL LSAME, ILAENV, DLAMCH, DLANST
* ..
* .. External Subroutines ..
EXTERNAL DCOPY, DSCAL, DSTEBZ, DSTEMR, DSTEIN, DSTERF,
$ DSWAP, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN, SQRT
* ..
* .. Executable Statements ..
*
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -