⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 shgeqz.f

📁 famous linear algebra library (LAPACK) ports to windows
💻 F
📖 第 1 页 / 共 3 页
字号:
*
*           Special case: j=ILAST
*
            GO TO 80
         ELSE
            IF( ABS( H( ILAST, ILAST-1 ) ).LE.ATOL ) THEN
               H( ILAST, ILAST-1 ) = ZERO
               GO TO 80
            END IF
         END IF
*
         IF( ABS( T( ILAST, ILAST ) ).LE.BTOL ) THEN
            T( ILAST, ILAST ) = ZERO
            GO TO 70
         END IF
*
*        General case: j<ILAST
*
         DO 60 J = ILAST - 1, ILO, -1
*
*           Test 1: for H(j,j-1)=0 or j=ILO
*
            IF( J.EQ.ILO ) THEN
               ILAZRO = .TRUE.
            ELSE
               IF( ABS( H( J, J-1 ) ).LE.ATOL ) THEN
                  H( J, J-1 ) = ZERO
                  ILAZRO = .TRUE.
               ELSE
                  ILAZRO = .FALSE.
               END IF
            END IF
*
*           Test 2: for T(j,j)=0
*
            IF( ABS( T( J, J ) ).LT.BTOL ) THEN
               T( J, J ) = ZERO
*
*              Test 1a: Check for 2 consecutive small subdiagonals in A
*
               ILAZR2 = .FALSE.
               IF( .NOT.ILAZRO ) THEN
                  TEMP = ABS( H( J, J-1 ) )
                  TEMP2 = ABS( H( J, J ) )
                  TEMPR = MAX( TEMP, TEMP2 )
                  IF( TEMPR.LT.ONE .AND. TEMPR.NE.ZERO ) THEN
                     TEMP = TEMP / TEMPR
                     TEMP2 = TEMP2 / TEMPR
                  END IF
                  IF( TEMP*( ASCALE*ABS( H( J+1, J ) ) ).LE.TEMP2*
     $                ( ASCALE*ATOL ) )ILAZR2 = .TRUE.
               END IF
*
*              If both tests pass (1 & 2), i.e., the leading diagonal
*              element of B in the block is zero, split a 1x1 block off
*              at the top. (I.e., at the J-th row/column) The leading
*              diagonal element of the remainder can also be zero, so
*              this may have to be done repeatedly.
*
               IF( ILAZRO .OR. ILAZR2 ) THEN
                  DO 40 JCH = J, ILAST - 1
                     TEMP = H( JCH, JCH )
                     CALL SLARTG( TEMP, H( JCH+1, JCH ), C, S,
     $                            H( JCH, JCH ) )
                     H( JCH+1, JCH ) = ZERO
                     CALL SROT( ILASTM-JCH, H( JCH, JCH+1 ), LDH,
     $                          H( JCH+1, JCH+1 ), LDH, C, S )
                     CALL SROT( ILASTM-JCH, T( JCH, JCH+1 ), LDT,
     $                          T( JCH+1, JCH+1 ), LDT, C, S )
                     IF( ILQ )
     $                  CALL SROT( N, Q( 1, JCH ), 1, Q( 1, JCH+1 ), 1,
     $                             C, S )
                     IF( ILAZR2 )
     $                  H( JCH, JCH-1 ) = H( JCH, JCH-1 )*C
                     ILAZR2 = .FALSE.
                     IF( ABS( T( JCH+1, JCH+1 ) ).GE.BTOL ) THEN
                        IF( JCH+1.GE.ILAST ) THEN
                           GO TO 80
                        ELSE
                           IFIRST = JCH + 1
                           GO TO 110
                        END IF
                     END IF
                     T( JCH+1, JCH+1 ) = ZERO
   40             CONTINUE
                  GO TO 70
               ELSE
*
*                 Only test 2 passed -- chase the zero to T(ILAST,ILAST)
*                 Then process as in the case T(ILAST,ILAST)=0
*
                  DO 50 JCH = J, ILAST - 1
                     TEMP = T( JCH, JCH+1 )
                     CALL SLARTG( TEMP, T( JCH+1, JCH+1 ), C, S,
     $                            T( JCH, JCH+1 ) )
                     T( JCH+1, JCH+1 ) = ZERO
                     IF( JCH.LT.ILASTM-1 )
     $                  CALL SROT( ILASTM-JCH-1, T( JCH, JCH+2 ), LDT,
     $                             T( JCH+1, JCH+2 ), LDT, C, S )
                     CALL SROT( ILASTM-JCH+2, H( JCH, JCH-1 ), LDH,
     $                          H( JCH+1, JCH-1 ), LDH, C, S )
                     IF( ILQ )
     $                  CALL SROT( N, Q( 1, JCH ), 1, Q( 1, JCH+1 ), 1,
     $                             C, S )
                     TEMP = H( JCH+1, JCH )
                     CALL SLARTG( TEMP, H( JCH+1, JCH-1 ), C, S,
     $                            H( JCH+1, JCH ) )
                     H( JCH+1, JCH-1 ) = ZERO
                     CALL SROT( JCH+1-IFRSTM, H( IFRSTM, JCH ), 1,
     $                          H( IFRSTM, JCH-1 ), 1, C, S )
                     CALL SROT( JCH-IFRSTM, T( IFRSTM, JCH ), 1,
     $                          T( IFRSTM, JCH-1 ), 1, C, S )
                     IF( ILZ )
     $                  CALL SROT( N, Z( 1, JCH ), 1, Z( 1, JCH-1 ), 1,
     $                             C, S )
   50             CONTINUE
                  GO TO 70
               END IF
            ELSE IF( ILAZRO ) THEN
*
*              Only test 1 passed -- work on J:ILAST
*
               IFIRST = J
               GO TO 110
            END IF
*
*           Neither test passed -- try next J
*
   60    CONTINUE
*
*        (Drop-through is "impossible")
*
         INFO = N + 1
         GO TO 420
*
*        T(ILAST,ILAST)=0 -- clear H(ILAST,ILAST-1) to split off a
*        1x1 block.
*
   70    CONTINUE
         TEMP = H( ILAST, ILAST )
         CALL SLARTG( TEMP, H( ILAST, ILAST-1 ), C, S,
     $                H( ILAST, ILAST ) )
         H( ILAST, ILAST-1 ) = ZERO
         CALL SROT( ILAST-IFRSTM, H( IFRSTM, ILAST ), 1,
     $              H( IFRSTM, ILAST-1 ), 1, C, S )
         CALL SROT( ILAST-IFRSTM, T( IFRSTM, ILAST ), 1,
     $              T( IFRSTM, ILAST-1 ), 1, C, S )
         IF( ILZ )
     $      CALL SROT( N, Z( 1, ILAST ), 1, Z( 1, ILAST-1 ), 1, C, S )
*
*        H(ILAST,ILAST-1)=0 -- Standardize B, set ALPHAR, ALPHAI,
*                              and BETA
*
   80    CONTINUE
         IF( T( ILAST, ILAST ).LT.ZERO ) THEN
            IF( ILSCHR ) THEN
               DO 90 J = IFRSTM, ILAST
                  H( J, ILAST ) = -H( J, ILAST )
                  T( J, ILAST ) = -T( J, ILAST )
   90          CONTINUE
            ELSE
               H( ILAST, ILAST ) = -H( ILAST, ILAST )
               T( ILAST, ILAST ) = -T( ILAST, ILAST )
            END IF
            IF( ILZ ) THEN
               DO 100 J = 1, N
                  Z( J, ILAST ) = -Z( J, ILAST )
  100          CONTINUE
            END IF
         END IF
         ALPHAR( ILAST ) = H( ILAST, ILAST )
         ALPHAI( ILAST ) = ZERO
         BETA( ILAST ) = T( ILAST, ILAST )
*
*        Go to next block -- exit if finished.
*
         ILAST = ILAST - 1
         IF( ILAST.LT.ILO )
     $      GO TO 380
*
*        Reset counters
*
         IITER = 0
         ESHIFT = ZERO
         IF( .NOT.ILSCHR ) THEN
            ILASTM = ILAST
            IF( IFRSTM.GT.ILAST )
     $         IFRSTM = ILO
         END IF
         GO TO 350
*
*        QZ step
*
*        This iteration only involves rows/columns IFIRST:ILAST. We
*        assume IFIRST < ILAST, and that the diagonal of B is non-zero.
*
  110    CONTINUE
         IITER = IITER + 1
         IF( .NOT.ILSCHR ) THEN
            IFRSTM = IFIRST
         END IF
*
*        Compute single shifts.
*
*        At this point, IFIRST < ILAST, and the diagonal elements of
*        T(IFIRST:ILAST,IFIRST,ILAST) are larger than BTOL (in
*        magnitude)
*
         IF( ( IITER / 10 )*10.EQ.IITER ) THEN
*
*           Exceptional shift.  Chosen for no particularly good reason.
*           (Single shift only.)
*
            IF( ( REAL( MAXIT )*SAFMIN )*ABS( H( ILAST-1, ILAST ) ).LT.
     $          ABS( T( ILAST-1, ILAST-1 ) ) ) THEN
               ESHIFT = ESHIFT + H( ILAST-1, ILAST ) /
     $                  T( ILAST-1, ILAST-1 )
            ELSE
               ESHIFT = ESHIFT + ONE / ( SAFMIN*REAL( MAXIT ) )
            END IF
            S1 = ONE
            WR = ESHIFT
*
         ELSE
*
*           Shifts based on the generalized eigenvalues of the
*           bottom-right 2x2 block of A and B. The first eigenvalue
*           returned by SLAG2 is the Wilkinson shift (AEP p.512),
*
            CALL SLAG2( H( ILAST-1, ILAST-1 ), LDH,
     $                  T( ILAST-1, ILAST-1 ), LDT, SAFMIN*SAFETY, S1,
     $                  S2, WR, WR2, WI )
*
            TEMP = MAX( S1, SAFMIN*MAX( ONE, ABS( WR ), ABS( WI ) ) )
            IF( WI.NE.ZERO )
     $         GO TO 200
         END IF
*
*        Fiddle with shift to avoid overflow
*
         TEMP = MIN( ASCALE, ONE )*( HALF*SAFMAX )
         IF( S1.GT.TEMP ) THEN
            SCALE = TEMP / S1
         ELSE
            SCALE = ONE
         END IF
*
         TEMP = MIN( BSCALE, ONE )*( HALF*SAFMAX )
         IF( ABS( WR ).GT.TEMP )
     $      SCALE = MIN( SCALE, TEMP / ABS( WR ) )
         S1 = SCALE*S1
         WR = SCALE*WR
*
*        Now check for two consecutive small subdiagonals.
*
         DO 120 J = ILAST - 1, IFIRST + 1, -1
            ISTART = J
            TEMP = ABS( S1*H( J, J-1 ) )
            TEMP2 = ABS( S1*H( J, J )-WR*T( J, J ) )
            TEMPR = MAX( TEMP, TEMP2 )
            IF( TEMPR.LT.ONE .AND. TEMPR.NE.ZERO ) THEN
               TEMP = TEMP / TEMPR
               TEMP2 = TEMP2 / TEMPR
            END IF
            IF( ABS( ( ASCALE*H( J+1, J ) )*TEMP ).LE.( ASCALE*ATOL )*
     $          TEMP2 )GO TO 130
  120    CONTINUE
*
         ISTART = IFIRST
  130    CONTINUE
*
*        Do an implicit single-shift QZ sweep.
*
*        Initial Q
*
         TEMP = S1*H( ISTART, ISTART ) - WR*T( ISTART, ISTART )
         TEMP2 = S1*H( ISTART+1, ISTART )
         CALL SLARTG( TEMP, TEMP2, C, S, TEMPR )
*
*        Sweep
*
         DO 190 J = ISTART, ILAST - 1
            IF( J.GT.ISTART ) THEN
               TEMP = H( J, J-1 )
               CALL SLARTG( TEMP, H( J+1, J-1 ), C, S, H( J, J-1 ) )
               H( J+1, J-1 ) = ZERO
            END IF
*
            DO 140 JC = J, ILASTM
               TEMP = C*H( J, JC ) + S*H( J+1, JC )
               H( J+1, JC ) = -S*H( J, JC ) + C*H( J+1, JC )
               H( J, JC ) = TEMP
               TEMP2 = C*T( J, JC ) + S*T( J+1, JC )
               T( J+1, JC ) = -S*T( J, JC ) + C*T( J+1, JC )
               T( J, JC ) = TEMP2
  140       CONTINUE
            IF( ILQ ) THEN
               DO 150 JR = 1, N
                  TEMP = C*Q( JR, J ) + S*Q( JR, J+1 )
                  Q( JR, J+1 ) = -S*Q( JR, J ) + C*Q( JR, J+1 )
                  Q( JR, J ) = TEMP
  150          CONTINUE
            END IF
*
            TEMP = T( J+1, J+1 )
            CALL SLARTG( TEMP, T( J+1, J ), C, S, T( J+1, J+1 ) )
            T( J+1, J ) = ZERO
*
            DO 160 JR = IFRSTM, MIN( J+2, ILAST )
               TEMP = C*H( JR, J+1 ) + S*H( JR, J )
               H( JR, J ) = -S*H( JR, J+1 ) + C*H( JR, J )
               H( JR, J+1 ) = TEMP
  160       CONTINUE
            DO 170 JR = IFRSTM, J
               TEMP = C*T( JR, J+1 ) + S*T( JR, J )
               T( JR, J ) = -S*T( JR, J+1 ) + C*T( JR, J )
               T( JR, J+1 ) = TEMP
  170       CONTINUE
            IF( ILZ ) THEN
               DO 180 JR = 1, N
                  TEMP = C*Z( JR, J+1 ) + S*Z( JR, J )
                  Z( JR, J ) = -S*Z( JR, J+1 ) + C*Z( JR, J )
                  Z( JR, J+1 ) = TEMP
  180          CONTINUE
            END IF
  190    CONTINUE
*
         GO TO 350
*
*        Use Francis double-shift
*
*        Note: the Francis double-shift should work with real shifts,
*              but only if the block is at least 3x3.
*              This code may break if this point is reached with
*              a 2x2 block with real eigenvalues.
*
  200    CONTINUE
         IF( IFIRST+1.EQ.ILAST ) THEN
*
*           Special case -- 2x2 block with complex eigenvectors
*
*           Step 1: Standardize, that is, rotate so that
*
*                       ( B11  0  )
*                   B = (         )  with B11 non-negative.
*                       (  0  B22 )
*
            CALL SLASV2( T( ILAST-1, ILAST-1 ), T( ILAST-1, ILAST ),
     $                   T( ILAST, ILAST ), B22, B11, SR, CR, SL, CL )
*
            IF( B11.LT.ZERO ) THEN
               CR = -CR
               SR = -SR
               B11 = -B11
               B22 = -B22
            END IF
*
            CALL SROT( ILASTM+1-IFIRST, H( ILAST-1, ILAST-1 ), LDH,
     $                 H( ILAST, ILAST-1 ), LDH, CL, SL )
            CALL SROT( ILAST+1-IFRSTM, H( IFRSTM, ILAST-1 ), 1,
     $                 H( IFRSTM, ILAST ), 1, CR, SR )
*
            IF( ILAST.LT.ILASTM )
     $         CALL SROT( ILASTM-ILAST, T( ILAST-1, ILAST+1 ), LDT,
     $                    T( ILAST, ILAST+1 ), LDH, CL, SL )
            IF( IFRSTM.LT.ILAST-1 )
     $         CALL SROT( IFIRST-IFRSTM, T( IFRSTM, ILAST-1 ), 1,
     $                    T( IFRSTM, ILAST ), 1, CR, SR )
*
            IF( ILQ )
     $         CALL SROT( N, Q( 1, ILAST-1 ), 1, Q( 1, ILAST ), 1, CL,
     $                    SL )
            IF( ILZ )
     $         CALL SROT( N, Z( 1, ILAST-1 ), 1, Z( 1, ILAST ), 1, CR,
     $                    SR )
*
            T( ILAST-1, ILAST-1 ) = B11
            T( ILAST-1, ILAST ) = ZERO
            T( ILAST, ILAST-1 ) = ZERO
            T( ILAST, ILAST ) = B22
*
*           If B22 is negative, negate column ILAST
*
            IF( B22.LT.ZERO ) THEN
               DO 210 J = IFRSTM, ILAST
                  H( J, ILAST ) = -H( J, ILAST )
                  T( J, ILAST ) = -T( J, ILAST )
  210          CONTINUE
*
               IF( ILZ ) THEN
                  DO 220 J = 1, N
                     Z( J, ILAST ) = -Z( J, ILAST )
  220             CONTINUE
               END IF
            END IF
*
*           Step 2: Compute ALPHAR, ALPHAI, and BETA (see refs.)
*
*           Recompute shift
*
            CALL SLAG2( H( ILAST-1, ILAST-1 ), LDH,
     $                  T( ILAST-1, ILAST-1 ), LDT, SAFMIN*SAFETY, S1,
     $                  TEMP, WR, TEMP2, WI )
*
*           If standardization has perturbed the shift onto real line,
*           do another (real single-shift) QR step.
*
            IF( WI.EQ.ZERO )
     $         GO TO 350
            S1INV = ONE / S1
*
*           Do EISPACK (QZVAL) computation of alpha and beta
*
            A11 = H( ILAST-1, ILAST-1 )
            A21 = H( ILAST, ILAST-1 )

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -