📄 shgeqz.f
字号:
SUBROUTINE SHGEQZ( JOB, COMPQ, COMPZ, N, ILO, IHI, H, LDH, T, LDT,
$ ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ, WORK,
$ LWORK, INFO )
*
* -- LAPACK routine (version 3.1) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
CHARACTER COMPQ, COMPZ, JOB
INTEGER IHI, ILO, INFO, LDH, LDQ, LDT, LDZ, LWORK, N
* ..
* .. Array Arguments ..
REAL ALPHAI( * ), ALPHAR( * ), BETA( * ),
$ H( LDH, * ), Q( LDQ, * ), T( LDT, * ),
$ WORK( * ), Z( LDZ, * )
* ..
*
* Purpose
* =======
*
* SHGEQZ computes the eigenvalues of a real matrix pair (H,T),
* where H is an upper Hessenberg matrix and T is upper triangular,
* using the double-shift QZ method.
* Matrix pairs of this type are produced by the reduction to
* generalized upper Hessenberg form of a real matrix pair (A,B):
*
* A = Q1*H*Z1**T, B = Q1*T*Z1**T,
*
* as computed by SGGHRD.
*
* If JOB='S', then the Hessenberg-triangular pair (H,T) is
* also reduced to generalized Schur form,
*
* H = Q*S*Z**T, T = Q*P*Z**T,
*
* where Q and Z are orthogonal matrices, P is an upper triangular
* matrix, and S is a quasi-triangular matrix with 1-by-1 and 2-by-2
* diagonal blocks.
*
* The 1-by-1 blocks correspond to real eigenvalues of the matrix pair
* (H,T) and the 2-by-2 blocks correspond to complex conjugate pairs of
* eigenvalues.
*
* Additionally, the 2-by-2 upper triangular diagonal blocks of P
* corresponding to 2-by-2 blocks of S are reduced to positive diagonal
* form, i.e., if S(j+1,j) is non-zero, then P(j+1,j) = P(j,j+1) = 0,
* P(j,j) > 0, and P(j+1,j+1) > 0.
*
* Optionally, the orthogonal matrix Q from the generalized Schur
* factorization may be postmultiplied into an input matrix Q1, and the
* orthogonal matrix Z may be postmultiplied into an input matrix Z1.
* If Q1 and Z1 are the orthogonal matrices from SGGHRD that reduced
* the matrix pair (A,B) to generalized upper Hessenberg form, then the
* output matrices Q1*Q and Z1*Z are the orthogonal factors from the
* generalized Schur factorization of (A,B):
*
* A = (Q1*Q)*S*(Z1*Z)**T, B = (Q1*Q)*P*(Z1*Z)**T.
*
* To avoid overflow, eigenvalues of the matrix pair (H,T) (equivalently,
* of (A,B)) are computed as a pair of values (alpha,beta), where alpha is
* complex and beta real.
* If beta is nonzero, lambda = alpha / beta is an eigenvalue of the
* generalized nonsymmetric eigenvalue problem (GNEP)
* A*x = lambda*B*x
* and if alpha is nonzero, mu = beta / alpha is an eigenvalue of the
* alternate form of the GNEP
* mu*A*y = B*y.
* Real eigenvalues can be read directly from the generalized Schur
* form:
* alpha = S(i,i), beta = P(i,i).
*
* Ref: C.B. Moler & G.W. Stewart, "An Algorithm for Generalized Matrix
* Eigenvalue Problems", SIAM J. Numer. Anal., 10(1973),
* pp. 241--256.
*
* Arguments
* =========
*
* JOB (input) CHARACTER*1
* = 'E': Compute eigenvalues only;
* = 'S': Compute eigenvalues and the Schur form.
*
* COMPQ (input) CHARACTER*1
* = 'N': Left Schur vectors (Q) are not computed;
* = 'I': Q is initialized to the unit matrix and the matrix Q
* of left Schur vectors of (H,T) is returned;
* = 'V': Q must contain an orthogonal matrix Q1 on entry and
* the product Q1*Q is returned.
*
* COMPZ (input) CHARACTER*1
* = 'N': Right Schur vectors (Z) are not computed;
* = 'I': Z is initialized to the unit matrix and the matrix Z
* of right Schur vectors of (H,T) is returned;
* = 'V': Z must contain an orthogonal matrix Z1 on entry and
* the product Z1*Z is returned.
*
* N (input) INTEGER
* The order of the matrices H, T, Q, and Z. N >= 0.
*
* ILO (input) INTEGER
* IHI (input) INTEGER
* ILO and IHI mark the rows and columns of H which are in
* Hessenberg form. It is assumed that A is already upper
* triangular in rows and columns 1:ILO-1 and IHI+1:N.
* If N > 0, 1 <= ILO <= IHI <= N; if N = 0, ILO=1 and IHI=0.
*
* H (input/output) REAL array, dimension (LDH, N)
* On entry, the N-by-N upper Hessenberg matrix H.
* On exit, if JOB = 'S', H contains the upper quasi-triangular
* matrix S from the generalized Schur factorization;
* 2-by-2 diagonal blocks (corresponding to complex conjugate
* pairs of eigenvalues) are returned in standard form, with
* H(i,i) = H(i+1,i+1) and H(i+1,i)*H(i,i+1) < 0.
* If JOB = 'E', the diagonal blocks of H match those of S, but
* the rest of H is unspecified.
*
* LDH (input) INTEGER
* The leading dimension of the array H. LDH >= max( 1, N ).
*
* T (input/output) REAL array, dimension (LDT, N)
* On entry, the N-by-N upper triangular matrix T.
* On exit, if JOB = 'S', T contains the upper triangular
* matrix P from the generalized Schur factorization;
* 2-by-2 diagonal blocks of P corresponding to 2-by-2 blocks of S
* are reduced to positive diagonal form, i.e., if H(j+1,j) is
* non-zero, then T(j+1,j) = T(j,j+1) = 0, T(j,j) > 0, and
* T(j+1,j+1) > 0.
* If JOB = 'E', the diagonal blocks of T match those of P, but
* the rest of T is unspecified.
*
* LDT (input) INTEGER
* The leading dimension of the array T. LDT >= max( 1, N ).
*
* ALPHAR (output) REAL array, dimension (N)
* The real parts of each scalar alpha defining an eigenvalue
* of GNEP.
*
* ALPHAI (output) REAL array, dimension (N)
* The imaginary parts of each scalar alpha defining an
* eigenvalue of GNEP.
* If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
* positive, then the j-th and (j+1)-st eigenvalues are a
* complex conjugate pair, with ALPHAI(j+1) = -ALPHAI(j).
*
* BETA (output) REAL array, dimension (N)
* The scalars beta that define the eigenvalues of GNEP.
* Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and
* beta = BETA(j) represent the j-th eigenvalue of the matrix
* pair (A,B), in one of the forms lambda = alpha/beta or
* mu = beta/alpha. Since either lambda or mu may overflow,
* they should not, in general, be computed.
*
* Q (input/output) REAL array, dimension (LDQ, N)
* On entry, if COMPZ = 'V', the orthogonal matrix Q1 used in
* the reduction of (A,B) to generalized Hessenberg form.
* On exit, if COMPZ = 'I', the orthogonal matrix of left Schur
* vectors of (H,T), and if COMPZ = 'V', the orthogonal matrix
* of left Schur vectors of (A,B).
* Not referenced if COMPZ = 'N'.
*
* LDQ (input) INTEGER
* The leading dimension of the array Q. LDQ >= 1.
* If COMPQ='V' or 'I', then LDQ >= N.
*
* Z (input/output) REAL array, dimension (LDZ, N)
* On entry, if COMPZ = 'V', the orthogonal matrix Z1 used in
* the reduction of (A,B) to generalized Hessenberg form.
* On exit, if COMPZ = 'I', the orthogonal matrix of
* right Schur vectors of (H,T), and if COMPZ = 'V', the
* orthogonal matrix of right Schur vectors of (A,B).
* Not referenced if COMPZ = 'N'.
*
* LDZ (input) INTEGER
* The leading dimension of the array Z. LDZ >= 1.
* If COMPZ='V' or 'I', then LDZ >= N.
*
* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
* On exit, if INFO >= 0, WORK(1) returns the optimal LWORK.
*
* LWORK (input) INTEGER
* The dimension of the array WORK. LWORK >= max(1,N).
*
* If LWORK = -1, then a workspace query is assumed; the routine
* only calculates the optimal size of the WORK array, returns
* this value as the first entry of the WORK array, and no error
* message related to LWORK is issued by XERBLA.
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
* = 1,...,N: the QZ iteration did not converge. (H,T) is not
* in Schur form, but ALPHAR(i), ALPHAI(i), and
* BETA(i), i=INFO+1,...,N should be correct.
* = N+1,...,2*N: the shift calculation failed. (H,T) is not
* in Schur form, but ALPHAR(i), ALPHAI(i), and
* BETA(i), i=INFO-N+1,...,N should be correct.
*
* Further Details
* ===============
*
* Iteration counters:
*
* JITER -- counts iterations.
* IITER -- counts iterations run since ILAST was last
* changed. This is therefore reset only when a 1-by-1 or
* 2-by-2 block deflates off the bottom.
*
* =====================================================================
*
* .. Parameters ..
* $ SAFETY = 1.0E+0 )
REAL HALF, ZERO, ONE, SAFETY
PARAMETER ( HALF = 0.5E+0, ZERO = 0.0E+0, ONE = 1.0E+0,
$ SAFETY = 1.0E+2 )
* ..
* .. Local Scalars ..
LOGICAL ILAZR2, ILAZRO, ILPIVT, ILQ, ILSCHR, ILZ,
$ LQUERY
INTEGER ICOMPQ, ICOMPZ, IFIRST, IFRSTM, IITER, ILAST,
$ ILASTM, IN, ISCHUR, ISTART, J, JC, JCH, JITER,
$ JR, MAXIT
REAL A11, A12, A1I, A1R, A21, A22, A2I, A2R, AD11,
$ AD11L, AD12, AD12L, AD21, AD21L, AD22, AD22L,
$ AD32L, AN, ANORM, ASCALE, ATOL, B11, B1A, B1I,
$ B1R, B22, B2A, B2I, B2R, BN, BNORM, BSCALE,
$ BTOL, C, C11I, C11R, C12, C21, C22I, C22R, CL,
$ CQ, CR, CZ, ESHIFT, S, S1, S1INV, S2, SAFMAX,
$ SAFMIN, SCALE, SL, SQI, SQR, SR, SZI, SZR, T1,
$ TAU, TEMP, TEMP2, TEMPI, TEMPR, U1, U12, U12L,
$ U2, ULP, VS, W11, W12, W21, W22, WABS, WI, WR,
$ WR2
* ..
* .. Local Arrays ..
REAL V( 3 )
* ..
* .. External Functions ..
LOGICAL LSAME
REAL SLAMCH, SLANHS, SLAPY2, SLAPY3
EXTERNAL LSAME, SLAMCH, SLANHS, SLAPY2, SLAPY3
* ..
* .. External Subroutines ..
EXTERNAL SLAG2, SLARFG, SLARTG, SLASET, SLASV2, SROT,
$ XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN, REAL, SQRT
* ..
* .. Executable Statements ..
*
* Decode JOB, COMPQ, COMPZ
*
IF( LSAME( JOB, 'E' ) ) THEN
ILSCHR = .FALSE.
ISCHUR = 1
ELSE IF( LSAME( JOB, 'S' ) ) THEN
ILSCHR = .TRUE.
ISCHUR = 2
ELSE
ISCHUR = 0
END IF
*
IF( LSAME( COMPQ, 'N' ) ) THEN
ILQ = .FALSE.
ICOMPQ = 1
ELSE IF( LSAME( COMPQ, 'V' ) ) THEN
ILQ = .TRUE.
ICOMPQ = 2
ELSE IF( LSAME( COMPQ, 'I' ) ) THEN
ILQ = .TRUE.
ICOMPQ = 3
ELSE
ICOMPQ = 0
END IF
*
IF( LSAME( COMPZ, 'N' ) ) THEN
ILZ = .FALSE.
ICOMPZ = 1
ELSE IF( LSAME( COMPZ, 'V' ) ) THEN
ILZ = .TRUE.
ICOMPZ = 2
ELSE IF( LSAME( COMPZ, 'I' ) ) THEN
ILZ = .TRUE.
ICOMPZ = 3
ELSE
ICOMPZ = 0
END IF
*
* Check Argument Values
*
INFO = 0
WORK( 1 ) = MAX( 1, N )
LQUERY = ( LWORK.EQ.-1 )
IF( ISCHUR.EQ.0 ) THEN
INFO = -1
ELSE IF( ICOMPQ.EQ.0 ) THEN
INFO = -2
ELSE IF( ICOMPZ.EQ.0 ) THEN
INFO = -3
ELSE IF( N.LT.0 ) THEN
INFO = -4
ELSE IF( ILO.LT.1 ) THEN
INFO = -5
ELSE IF( IHI.GT.N .OR. IHI.LT.ILO-1 ) THEN
INFO = -6
ELSE IF( LDH.LT.N ) THEN
INFO = -8
ELSE IF( LDT.LT.N ) THEN
INFO = -10
ELSE IF( LDQ.LT.1 .OR. ( ILQ .AND. LDQ.LT.N ) ) THEN
INFO = -15
ELSE IF( LDZ.LT.1 .OR. ( ILZ .AND. LDZ.LT.N ) ) THEN
INFO = -17
ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
INFO = -19
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SHGEQZ', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible
*
IF( N.LE.0 ) THEN
WORK( 1 ) = REAL( 1 )
RETURN
END IF
*
* Initialize Q and Z
*
IF( ICOMPQ.EQ.3 )
$ CALL SLASET( 'Full', N, N, ZERO, ONE, Q, LDQ )
IF( ICOMPZ.EQ.3 )
$ CALL SLASET( 'Full', N, N, ZERO, ONE, Z, LDZ )
*
* Machine Constants
*
IN = IHI + 1 - ILO
SAFMIN = SLAMCH( 'S' )
SAFMAX = ONE / SAFMIN
ULP = SLAMCH( 'E' )*SLAMCH( 'B' )
ANORM = SLANHS( 'F', IN, H( ILO, ILO ), LDH, WORK )
BNORM = SLANHS( 'F', IN, T( ILO, ILO ), LDT, WORK )
ATOL = MAX( SAFMIN, ULP*ANORM )
BTOL = MAX( SAFMIN, ULP*BNORM )
ASCALE = ONE / MAX( SAFMIN, ANORM )
BSCALE = ONE / MAX( SAFMIN, BNORM )
*
* Set Eigenvalues IHI+1:N
*
DO 30 J = IHI + 1, N
IF( T( J, J ).LT.ZERO ) THEN
IF( ILSCHR ) THEN
DO 10 JR = 1, J
H( JR, J ) = -H( JR, J )
T( JR, J ) = -T( JR, J )
10 CONTINUE
ELSE
H( J, J ) = -H( J, J )
T( J, J ) = -T( J, J )
END IF
IF( ILZ ) THEN
DO 20 JR = 1, N
Z( JR, J ) = -Z( JR, J )
20 CONTINUE
END IF
END IF
ALPHAR( J ) = H( J, J )
ALPHAI( J ) = ZERO
BETA( J ) = T( J, J )
30 CONTINUE
*
* If IHI < ILO, skip QZ steps
*
IF( IHI.LT.ILO )
$ GO TO 380
*
* MAIN QZ ITERATION LOOP
*
* Initialize dynamic indices
*
* Eigenvalues ILAST+1:N have been found.
* Column operations modify rows IFRSTM:whatever.
* Row operations modify columns whatever:ILASTM.
*
* If only eigenvalues are being computed, then
* IFRSTM is the row of the last splitting row above row ILAST;
* this is always at least ILO.
* IITER counts iterations since the last eigenvalue was found,
* to tell when to use an extraordinary shift.
* MAXIT is the maximum number of QZ sweeps allowed.
*
ILAST = IHI
IF( ILSCHR ) THEN
IFRSTM = 1
ILASTM = N
ELSE
IFRSTM = ILO
ILASTM = IHI
END IF
IITER = 0
ESHIFT = ZERO
MAXIT = 30*( IHI-ILO+1 )
*
DO 360 JITER = 1, MAXIT
*
* Split the matrix if possible.
*
* Two tests:
* 1: H(j,j-1)=0 or j=ILO
* 2: T(j,j)=0
*
IF( ILAST.EQ.ILO ) THEN
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -