📄 claqr5.f
字号:
V( 3, M ) = H( K+3, K )
CALL CLARFG( 3, BETA, V( 2, M ), 1, V( 1, M ) )
*
* ==== A Bulge may collapse because of vigilant
* . deflation or destructive underflow. (The
* . initial bulge is always collapsed.) Use
* . the two-small-subdiagonals trick to try
* . to get it started again. If V(2,M).NE.0 and
* . V(3,M) = H(K+3,K+1) = H(K+3,K+2) = 0, then
* . this bulge is collapsing into a zero
* . subdiagonal. It will be restarted next
* . trip through the loop.)
*
IF( V( 1, M ).NE.ZERO .AND.
$ ( V( 3, M ).NE.ZERO .OR. ( H( K+3,
$ K+1 ).EQ.ZERO .AND. H( K+3, K+2 ).EQ.ZERO ) ) )
$ THEN
*
* ==== Typical case: not collapsed (yet). ====
*
H( K+1, K ) = BETA
H( K+2, K ) = ZERO
H( K+3, K ) = ZERO
ELSE
*
* ==== Atypical case: collapsed. Attempt to
* . reintroduce ignoring H(K+1,K). If the
* . fill resulting from the new reflector
* . is too large, then abandon it.
* . Otherwise, use the new one. ====
*
CALL CLAQR1( 3, H( K+1, K+1 ), LDH, S( 2*M-1 ),
$ S( 2*M ), VT )
SCL = CABS1( VT( 1 ) ) + CABS1( VT( 2 ) ) +
$ CABS1( VT( 3 ) )
IF( SCL.NE.RZERO ) THEN
VT( 1 ) = VT( 1 ) / SCL
VT( 2 ) = VT( 2 ) / SCL
VT( 3 ) = VT( 3 ) / SCL
END IF
*
* ==== The following is the traditional and
* . conservative two-small-subdiagonals
* . test. ====
* .
IF( CABS1( H( K+1, K ) )*
$ ( CABS1( VT( 2 ) )+CABS1( VT( 3 ) ) ).GT.ULP*
$ CABS1( VT( 1 ) )*( CABS1( H( K,
$ K ) )+CABS1( H( K+1, K+1 ) )+CABS1( H( K+2,
$ K+2 ) ) ) ) THEN
*
* ==== Starting a new bulge here would
* . create non-negligible fill. If
* . the old reflector is diagonal (only
* . possible with underflows), then
* . change it to I. Otherwise, use
* . it with trepidation. ====
*
IF( V( 2, M ).EQ.ZERO .AND. V( 3, M ).EQ.ZERO )
$ THEN
V( 1, M ) = ZERO
ELSE
H( K+1, K ) = BETA
H( K+2, K ) = ZERO
H( K+3, K ) = ZERO
END IF
ELSE
*
* ==== Stating a new bulge here would
* . create only negligible fill.
* . Replace the old reflector with
* . the new one. ====
*
ALPHA = VT( 1 )
CALL CLARFG( 3, ALPHA, VT( 2 ), 1, VT( 1 ) )
REFSUM = H( K+1, K ) +
$ H( K+2, K )*CONJG( VT( 2 ) ) +
$ H( K+3, K )*CONJG( VT( 3 ) )
H( K+1, K ) = H( K+1, K ) -
$ CONJG( VT( 1 ) )*REFSUM
H( K+2, K ) = ZERO
H( K+3, K ) = ZERO
V( 1, M ) = VT( 1 )
V( 2, M ) = VT( 2 )
V( 3, M ) = VT( 3 )
END IF
END IF
END IF
10 CONTINUE
*
* ==== Generate a 2-by-2 reflection, if needed. ====
*
K = KRCOL + 3*( M22-1 )
IF( BMP22 ) THEN
IF( K.EQ.KTOP-1 ) THEN
CALL CLAQR1( 2, H( K+1, K+1 ), LDH, S( 2*M22-1 ),
$ S( 2*M22 ), V( 1, M22 ) )
BETA = V( 1, M22 )
CALL CLARFG( 2, BETA, V( 2, M22 ), 1, V( 1, M22 ) )
ELSE
BETA = H( K+1, K )
V( 2, M22 ) = H( K+2, K )
CALL CLARFG( 2, BETA, V( 2, M22 ), 1, V( 1, M22 ) )
H( K+1, K ) = BETA
H( K+2, K ) = ZERO
END IF
ELSE
*
* ==== Initialize V(1,M22) here to avoid possible undefined
* . variable problems later. ====
*
V( 1, M22 ) = ZERO
END IF
*
* ==== Multiply H by reflections from the left ====
*
IF( ACCUM ) THEN
JBOT = MIN( NDCOL, KBOT )
ELSE IF( WANTT ) THEN
JBOT = N
ELSE
JBOT = KBOT
END IF
DO 30 J = MAX( KTOP, KRCOL ), JBOT
MEND = MIN( MBOT, ( J-KRCOL+2 ) / 3 )
DO 20 M = MTOP, MEND
K = KRCOL + 3*( M-1 )
REFSUM = CONJG( V( 1, M ) )*
$ ( H( K+1, J )+CONJG( V( 2, M ) )*H( K+2, J )+
$ CONJG( V( 3, M ) )*H( K+3, J ) )
H( K+1, J ) = H( K+1, J ) - REFSUM
H( K+2, J ) = H( K+2, J ) - REFSUM*V( 2, M )
H( K+3, J ) = H( K+3, J ) - REFSUM*V( 3, M )
20 CONTINUE
30 CONTINUE
IF( BMP22 ) THEN
K = KRCOL + 3*( M22-1 )
DO 40 J = MAX( K+1, KTOP ), JBOT
REFSUM = CONJG( V( 1, M22 ) )*
$ ( H( K+1, J )+CONJG( V( 2, M22 ) )*
$ H( K+2, J ) )
H( K+1, J ) = H( K+1, J ) - REFSUM
H( K+2, J ) = H( K+2, J ) - REFSUM*V( 2, M22 )
40 CONTINUE
END IF
*
* ==== Multiply H by reflections from the right.
* . Delay filling in the last row until the
* . vigilant deflation check is complete. ====
*
IF( ACCUM ) THEN
JTOP = MAX( KTOP, INCOL )
ELSE IF( WANTT ) THEN
JTOP = 1
ELSE
JTOP = KTOP
END IF
DO 80 M = MTOP, MBOT
IF( V( 1, M ).NE.ZERO ) THEN
K = KRCOL + 3*( M-1 )
DO 50 J = JTOP, MIN( KBOT, K+3 )
REFSUM = V( 1, M )*( H( J, K+1 )+V( 2, M )*
$ H( J, K+2 )+V( 3, M )*H( J, K+3 ) )
H( J, K+1 ) = H( J, K+1 ) - REFSUM
H( J, K+2 ) = H( J, K+2 ) -
$ REFSUM*CONJG( V( 2, M ) )
H( J, K+3 ) = H( J, K+3 ) -
$ REFSUM*CONJG( V( 3, M ) )
50 CONTINUE
*
IF( ACCUM ) THEN
*
* ==== Accumulate U. (If necessary, update Z later
* . with with an efficient matrix-matrix
* . multiply.) ====
*
KMS = K - INCOL
DO 60 J = MAX( 1, KTOP-INCOL ), KDU
REFSUM = V( 1, M )*( U( J, KMS+1 )+V( 2, M )*
$ U( J, KMS+2 )+V( 3, M )*U( J, KMS+3 ) )
U( J, KMS+1 ) = U( J, KMS+1 ) - REFSUM
U( J, KMS+2 ) = U( J, KMS+2 ) -
$ REFSUM*CONJG( V( 2, M ) )
U( J, KMS+3 ) = U( J, KMS+3 ) -
$ REFSUM*CONJG( V( 3, M ) )
60 CONTINUE
ELSE IF( WANTZ ) THEN
*
* ==== U is not accumulated, so update Z
* . now by multiplying by reflections
* . from the right. ====
*
DO 70 J = ILOZ, IHIZ
REFSUM = V( 1, M )*( Z( J, K+1 )+V( 2, M )*
$ Z( J, K+2 )+V( 3, M )*Z( J, K+3 ) )
Z( J, K+1 ) = Z( J, K+1 ) - REFSUM
Z( J, K+2 ) = Z( J, K+2 ) -
$ REFSUM*CONJG( V( 2, M ) )
Z( J, K+3 ) = Z( J, K+3 ) -
$ REFSUM*CONJG( V( 3, M ) )
70 CONTINUE
END IF
END IF
80 CONTINUE
*
* ==== Special case: 2-by-2 reflection (if needed) ====
*
K = KRCOL + 3*( M22-1 )
IF( BMP22 .AND. ( V( 1, M22 ).NE.ZERO ) ) THEN
DO 90 J = JTOP, MIN( KBOT, K+3 )
REFSUM = V( 1, M22 )*( H( J, K+1 )+V( 2, M22 )*
$ H( J, K+2 ) )
H( J, K+1 ) = H( J, K+1 ) - REFSUM
H( J, K+2 ) = H( J, K+2 ) -
$ REFSUM*CONJG( V( 2, M22 ) )
90 CONTINUE
*
IF( ACCUM ) THEN
KMS = K - INCOL
DO 100 J = MAX( 1, KTOP-INCOL ), KDU
REFSUM = V( 1, M22 )*( U( J, KMS+1 )+V( 2, M22 )*
$ U( J, KMS+2 ) )
U( J, KMS+1 ) = U( J, KMS+1 ) - REFSUM
U( J, KMS+2 ) = U( J, KMS+2 ) -
$ REFSUM*CONJG( V( 2, M22 ) )
100 CONTINUE
ELSE IF( WANTZ ) THEN
DO 110 J = ILOZ, IHIZ
REFSUM = V( 1, M22 )*( Z( J, K+1 )+V( 2, M22 )*
$ Z( J, K+2 ) )
Z( J, K+1 ) = Z( J, K+1 ) - REFSUM
Z( J, K+2 ) = Z( J, K+2 ) -
$ REFSUM*CONJG( V( 2, M22 ) )
110 CONTINUE
END IF
END IF
*
* ==== Vigilant deflation check ====
*
MSTART = MTOP
IF( KRCOL+3*( MSTART-1 ).LT.KTOP )
$ MSTART = MSTART + 1
MEND = MBOT
IF( BMP22 )
$ MEND = MEND + 1
IF( KRCOL.EQ.KBOT-2 )
$ MEND = MEND + 1
DO 120 M = MSTART, MEND
K = MIN( KBOT-1, KRCOL+3*( M-1 ) )
*
* ==== The following convergence test requires that
* . the tradition small-compared-to-nearby-diagonals
* . criterion and the Ahues & Tisseur (LAWN 122, 1997)
* . criteria both be satisfied. The latter improves
* . accuracy in some examples. Falling back on an
* . alternate convergence criterion when TST1 or TST2
* . is zero (as done here) is traditional but probably
* . unnecessary. ====
*
IF( H( K+1, K ).NE.ZERO ) THEN
TST1 = CABS1( H( K, K ) ) + CABS1( H( K+1, K+1 ) )
IF( TST1.EQ.RZERO ) THEN
IF( K.GE.KTOP+1 )
$ TST1 = TST1 + CABS1( H( K, K-1 ) )
IF( K.GE.KTOP+2 )
$ TST1 = TST1 + CABS1( H( K, K-2 ) )
IF( K.GE.KTOP+3 )
$ TST1 = TST1 + CABS1( H( K, K-3 ) )
IF( K.LE.KBOT-2 )
$ TST1 = TST1 + CABS1( H( K+2, K+1 ) )
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -