⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 zgbbrd.f

📁 famous linear algebra library (LAPACK) ports to windows
💻 F
📖 第 1 页 / 共 2 页
字号:
      SUBROUTINE ZGBBRD( VECT, M, N, NCC, KL, KU, AB, LDAB, D, E, Q,
     $                   LDQ, PT, LDPT, C, LDC, WORK, RWORK, INFO )
*
*  -- LAPACK routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      CHARACTER          VECT
      INTEGER            INFO, KL, KU, LDAB, LDC, LDPT, LDQ, M, N, NCC
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   D( * ), E( * ), RWORK( * )
      COMPLEX*16         AB( LDAB, * ), C( LDC, * ), PT( LDPT, * ),
     $                   Q( LDQ, * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  ZGBBRD reduces a complex general m-by-n band matrix A to real upper
*  bidiagonal form B by a unitary transformation: Q' * A * P = B.
*
*  The routine computes B, and optionally forms Q or P', or computes
*  Q'*C for a given matrix C.
*
*  Arguments
*  =========
*
*  VECT    (input) CHARACTER*1
*          Specifies whether or not the matrices Q and P' are to be
*          formed.
*          = 'N': do not form Q or P';
*          = 'Q': form Q only;
*          = 'P': form P' only;
*          = 'B': form both.
*
*  M       (input) INTEGER
*          The number of rows of the matrix A.  M >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the matrix A.  N >= 0.
*
*  NCC     (input) INTEGER
*          The number of columns of the matrix C.  NCC >= 0.
*
*  KL      (input) INTEGER
*          The number of subdiagonals of the matrix A. KL >= 0.
*
*  KU      (input) INTEGER
*          The number of superdiagonals of the matrix A. KU >= 0.
*
*  AB      (input/output) COMPLEX*16 array, dimension (LDAB,N)
*          On entry, the m-by-n band matrix A, stored in rows 1 to
*          KL+KU+1. The j-th column of A is stored in the j-th column of
*          the array AB as follows:
*          AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl).
*          On exit, A is overwritten by values generated during the
*          reduction.
*
*  LDAB    (input) INTEGER
*          The leading dimension of the array A. LDAB >= KL+KU+1.
*
*  D       (output) DOUBLE PRECISION array, dimension (min(M,N))
*          The diagonal elements of the bidiagonal matrix B.
*
*  E       (output) DOUBLE PRECISION array, dimension (min(M,N)-1)
*          The superdiagonal elements of the bidiagonal matrix B.
*
*  Q       (output) COMPLEX*16 array, dimension (LDQ,M)
*          If VECT = 'Q' or 'B', the m-by-m unitary matrix Q.
*          If VECT = 'N' or 'P', the array Q is not referenced.
*
*  LDQ     (input) INTEGER
*          The leading dimension of the array Q.
*          LDQ >= max(1,M) if VECT = 'Q' or 'B'; LDQ >= 1 otherwise.
*
*  PT      (output) COMPLEX*16 array, dimension (LDPT,N)
*          If VECT = 'P' or 'B', the n-by-n unitary matrix P'.
*          If VECT = 'N' or 'Q', the array PT is not referenced.
*
*  LDPT    (input) INTEGER
*          The leading dimension of the array PT.
*          LDPT >= max(1,N) if VECT = 'P' or 'B'; LDPT >= 1 otherwise.
*
*  C       (input/output) COMPLEX*16 array, dimension (LDC,NCC)
*          On entry, an m-by-ncc matrix C.
*          On exit, C is overwritten by Q'*C.
*          C is not referenced if NCC = 0.
*
*  LDC     (input) INTEGER
*          The leading dimension of the array C.
*          LDC >= max(1,M) if NCC > 0; LDC >= 1 if NCC = 0.
*
*  WORK    (workspace) COMPLEX*16 array, dimension (max(M,N))
*
*  RWORK   (workspace) DOUBLE PRECISION array, dimension (max(M,N))
*
*  INFO    (output) INTEGER
*          = 0:  successful exit.
*          < 0:  if INFO = -i, the i-th argument had an illegal value.
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO
      PARAMETER          ( ZERO = 0.0D+0 )
      COMPLEX*16         CZERO, CONE
      PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
     $                   CONE = ( 1.0D+0, 0.0D+0 ) )
*     ..
*     .. Local Scalars ..
      LOGICAL            WANTB, WANTC, WANTPT, WANTQ
      INTEGER            I, INCA, J, J1, J2, KB, KB1, KK, KLM, KLU1,
     $                   KUN, L, MINMN, ML, ML0, MU, MU0, NR, NRT
      DOUBLE PRECISION   ABST, RC
      COMPLEX*16         RA, RB, RS, T
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA, ZLARGV, ZLARTG, ZLARTV, ZLASET, ZROT,
     $                   ZSCAL
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, DCONJG, MAX, MIN
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters
*
      WANTB = LSAME( VECT, 'B' )
      WANTQ = LSAME( VECT, 'Q' ) .OR. WANTB
      WANTPT = LSAME( VECT, 'P' ) .OR. WANTB
      WANTC = NCC.GT.0
      KLU1 = KL + KU + 1
      INFO = 0
      IF( .NOT.WANTQ .AND. .NOT.WANTPT .AND. .NOT.LSAME( VECT, 'N' ) )
     $     THEN
         INFO = -1
      ELSE IF( M.LT.0 ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( NCC.LT.0 ) THEN
         INFO = -4
      ELSE IF( KL.LT.0 ) THEN
         INFO = -5
      ELSE IF( KU.LT.0 ) THEN
         INFO = -6
      ELSE IF( LDAB.LT.KLU1 ) THEN
         INFO = -8
      ELSE IF( LDQ.LT.1 .OR. WANTQ .AND. LDQ.LT.MAX( 1, M ) ) THEN
         INFO = -12
      ELSE IF( LDPT.LT.1 .OR. WANTPT .AND. LDPT.LT.MAX( 1, N ) ) THEN
         INFO = -14
      ELSE IF( LDC.LT.1 .OR. WANTC .AND. LDC.LT.MAX( 1, M ) ) THEN
         INFO = -16
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'ZGBBRD', -INFO )
         RETURN
      END IF
*
*     Initialize Q and P' to the unit matrix, if needed
*
      IF( WANTQ )
     $   CALL ZLASET( 'Full', M, M, CZERO, CONE, Q, LDQ )
      IF( WANTPT )
     $   CALL ZLASET( 'Full', N, N, CZERO, CONE, PT, LDPT )
*
*     Quick return if possible.
*
      IF( M.EQ.0 .OR. N.EQ.0 )
     $   RETURN
*
      MINMN = MIN( M, N )
*
      IF( KL+KU.GT.1 ) THEN
*
*        Reduce to upper bidiagonal form if KU > 0; if KU = 0, reduce
*        first to lower bidiagonal form and then transform to upper
*        bidiagonal
*
         IF( KU.GT.0 ) THEN
            ML0 = 1
            MU0 = 2
         ELSE
            ML0 = 2
            MU0 = 1
         END IF
*
*        Wherever possible, plane rotations are generated and applied in
*        vector operations of length NR over the index set J1:J2:KLU1.
*
*        The complex sines of the plane rotations are stored in WORK,
*        and the real cosines in RWORK.
*
         KLM = MIN( M-1, KL )
         KUN = MIN( N-1, KU )
         KB = KLM + KUN
         KB1 = KB + 1
         INCA = KB1*LDAB
         NR = 0
         J1 = KLM + 2
         J2 = 1 - KUN
*
         DO 90 I = 1, MINMN
*
*           Reduce i-th column and i-th row of matrix to bidiagonal form
*
            ML = KLM + 1
            MU = KUN + 1
            DO 80 KK = 1, KB
               J1 = J1 + KB
               J2 = J2 + KB
*
*              generate plane rotations to annihilate nonzero elements
*              which have been created below the band
*
               IF( NR.GT.0 )
     $            CALL ZLARGV( NR, AB( KLU1, J1-KLM-1 ), INCA,
     $                         WORK( J1 ), KB1, RWORK( J1 ), KB1 )
*
*              apply plane rotations from the left
*
               DO 10 L = 1, KB
                  IF( J2-KLM+L-1.GT.N ) THEN
                     NRT = NR - 1
                  ELSE
                     NRT = NR

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -