📄 slarre.f
字号:
GL = MIN( GERS( 2*I-1 ), GL )
GU = MAX( GERS( 2*I ), GU )
15 CONTINUE
SPDIAM = GU - GL
IF(.NOT. ((IRANGE.EQ.ALLRNG).AND.(.NOT.FORCEB)) ) THEN
* Count the number of eigenvalues in the current block.
MB = 0
DO 20 I = WBEGIN,MM
IF( IBLOCK(I).EQ.JBLK ) THEN
MB = MB+1
ELSE
GOTO 21
ENDIF
20 CONTINUE
21 CONTINUE
IF( MB.EQ.0) THEN
* No eigenvalue in the current block lies in the desired range
* E( IEND ) holds the shift for the initial RRR
E( IEND ) = ZERO
IBEGIN = IEND + 1
GO TO 170
ELSE
* Decide whether dqds or bisection is more efficient
USEDQD = ( (MB .GT. FAC*IN) .AND. (.NOT.FORCEB) )
WEND = WBEGIN + MB - 1
* Calculate gaps for the current block
* In later stages, when representations for individual
* eigenvalues are different, we use SIGMA = E( IEND ).
SIGMA = ZERO
DO 30 I = WBEGIN, WEND - 1
WGAP( I ) = MAX( ZERO,
$ W(I+1)-WERR(I+1) - (W(I)+WERR(I)) )
30 CONTINUE
WGAP( WEND ) = MAX( ZERO,
$ VU - SIGMA - (W( WEND )+WERR( WEND )))
* Find local index of the first and last desired evalue.
INDL = INDEXW(WBEGIN)
INDU = INDEXW( WEND )
ENDIF
ENDIF
IF(( (IRANGE.EQ.ALLRNG) .AND. (.NOT. FORCEB) ).OR.USEDQD) THEN
* Case of DQDS
* Find approximations to the extremal eigenvalues of the block
CALL SLARRK( IN, 1, GL, GU, D(IBEGIN),
$ E2(IBEGIN), PIVMIN, RTL, TMP, TMP1, IINFO )
IF( IINFO.NE.0 ) THEN
INFO = -1
RETURN
ENDIF
ISLEFT = MAX(GL, TMP - TMP1
$ - HNDRD * EPS* ABS(TMP - TMP1))
CALL SLARRK( IN, IN, GL, GU, D(IBEGIN),
$ E2(IBEGIN), PIVMIN, RTL, TMP, TMP1, IINFO )
IF( IINFO.NE.0 ) THEN
INFO = -1
RETURN
ENDIF
ISRGHT = MIN(GU, TMP + TMP1
$ + HNDRD * EPS * ABS(TMP + TMP1))
* Improve the estimate of the spectral diameter
SPDIAM = ISRGHT - ISLEFT
ELSE
* Case of bisection
* Find approximations to the wanted extremal eigenvalues
ISLEFT = MAX(GL, W(WBEGIN) - WERR(WBEGIN)
$ - HNDRD * EPS*ABS(W(WBEGIN)- WERR(WBEGIN) ))
ISRGHT = MIN(GU,W(WEND) + WERR(WEND)
$ + HNDRD * EPS * ABS(W(WEND)+ WERR(WEND)))
ENDIF
* Decide whether the base representation for the current block
* L_JBLK D_JBLK L_JBLK^T = T_JBLK - sigma_JBLK I
* should be on the left or the right end of the current block.
* The strategy is to shift to the end which is "more populated"
* Furthermore, decide whether to use DQDS for the computation of
* the eigenvalue approximations at the end of SLARRE or bisection.
* dqds is chosen if all eigenvalues are desired or the number of
* eigenvalues to be computed is large compared to the blocksize.
IF( ( IRANGE.EQ.ALLRNG ) .AND. (.NOT.FORCEB) ) THEN
* If all the eigenvalues have to be computed, we use dqd
USEDQD = .TRUE.
* INDL is the local index of the first eigenvalue to compute
INDL = 1
INDU = IN
* MB = number of eigenvalues to compute
MB = IN
WEND = WBEGIN + MB - 1
* Define 1/4 and 3/4 points of the spectrum
S1 = ISLEFT + FOURTH * SPDIAM
S2 = ISRGHT - FOURTH * SPDIAM
ELSE
* SLARRD has computed IBLOCK and INDEXW for each eigenvalue
* approximation.
* choose sigma
IF( USEDQD ) THEN
S1 = ISLEFT + FOURTH * SPDIAM
S2 = ISRGHT - FOURTH * SPDIAM
ELSE
TMP = MIN(ISRGHT,VU) - MAX(ISLEFT,VL)
S1 = MAX(ISLEFT,VL) + FOURTH * TMP
S2 = MIN(ISRGHT,VU) - FOURTH * TMP
ENDIF
ENDIF
* Compute the negcount at the 1/4 and 3/4 points
IF(MB.GT.1) THEN
CALL SLARRC( 'T', IN, S1, S2, D(IBEGIN),
$ E(IBEGIN), PIVMIN, CNT, CNT1, CNT2, IINFO)
ENDIF
IF(MB.EQ.1) THEN
SIGMA = GL
SGNDEF = ONE
ELSEIF( CNT1 - INDL .GE. INDU - CNT2 ) THEN
IF( ( IRANGE.EQ.ALLRNG ) .AND. (.NOT.FORCEB) ) THEN
SIGMA = MAX(ISLEFT,GL)
ELSEIF( USEDQD ) THEN
* use Gerschgorin bound as shift to get pos def matrix
* for dqds
SIGMA = ISLEFT
ELSE
* use approximation of the first desired eigenvalue of the
* block as shift
SIGMA = MAX(ISLEFT,VL)
ENDIF
SGNDEF = ONE
ELSE
IF( ( IRANGE.EQ.ALLRNG ) .AND. (.NOT.FORCEB) ) THEN
SIGMA = MIN(ISRGHT,GU)
ELSEIF( USEDQD ) THEN
* use Gerschgorin bound as shift to get neg def matrix
* for dqds
SIGMA = ISRGHT
ELSE
* use approximation of the first desired eigenvalue of the
* block as shift
SIGMA = MIN(ISRGHT,VU)
ENDIF
SGNDEF = -ONE
ENDIF
* An initial SIGMA has been chosen that will be used for computing
* T - SIGMA I = L D L^T
* Define the increment TAU of the shift in case the initial shift
* needs to be refined to obtain a factorization with not too much
* element growth.
IF( USEDQD ) THEN
* The initial SIGMA was to the outer end of the spectrum
* the matrix is definite and we need not retreat.
TAU = SPDIAM*EPS*N + TWO*PIVMIN
ELSE
IF(MB.GT.1) THEN
CLWDTH = W(WEND) + WERR(WEND) - W(WBEGIN) - WERR(WBEGIN)
AVGAP = ABS(CLWDTH / REAL(WEND-WBEGIN))
IF( SGNDEF.EQ.ONE ) THEN
TAU = HALF*MAX(WGAP(WBEGIN),AVGAP)
TAU = MAX(TAU,WERR(WBEGIN))
ELSE
TAU = HALF*MAX(WGAP(WEND-1),AVGAP)
TAU = MAX(TAU,WERR(WEND))
ENDIF
ELSE
TAU = WERR(WBEGIN)
ENDIF
ENDIF
*
DO 80 IDUM = 1, MAXTRY
* Compute L D L^T factorization of tridiagonal matrix T - sigma I.
* Store D in WORK(1:IN), L in WORK(IN+1:2*IN), and reciprocals of
* pivots in WORK(2*IN+1:3*IN)
DPIVOT = D( IBEGIN ) - SIGMA
WORK( 1 ) = DPIVOT
DMAX = ABS( WORK(1) )
J = IBEGIN
DO 70 I = 1, IN - 1
WORK( 2*IN+I ) = ONE / WORK( I )
TMP = E( J )*WORK( 2*IN+I )
WORK( IN+I ) = TMP
DPIVOT = ( D( J+1 )-SIGMA ) - TMP*E( J )
WORK( I+1 ) = DPIVOT
DMAX = MAX( DMAX, ABS(DPIVOT) )
J = J + 1
70 CONTINUE
* check for element growth
IF( DMAX .GT. MAXGROWTH*SPDIAM ) THEN
NOREP = .TRUE.
ELSE
NOREP = .FALSE.
ENDIF
IF( USEDQD .AND. .NOT.NOREP ) THEN
* Ensure the definiteness of the representation
* All entries of D (of L D L^T) must have the same sign
DO 71 I = 1, IN
TMP = SGNDEF*WORK( I )
IF( TMP.LT.ZERO ) NOREP = .TRUE.
71 CONTINUE
ENDIF
IF(NOREP) THEN
* Note that in the case of IRANGE=ALLRNG, we use the Gerschgorin
* shift which makes the matrix definite. So we should end up
* here really only in the case of IRANGE = VALRNG or INDRNG.
IF( IDUM.EQ.MAXTRY-1 ) THEN
IF( SGNDEF.EQ.ONE ) THEN
* The fudged Gerschgorin shift should succeed
SIGMA =
$ GL - FUDGE*SPDIAM*EPS*N - FUDGE*TWO*PIVMIN
ELSE
SIGMA =
$ GU + FUDGE*SPDIAM*EPS*N + FUDGE*TWO*PIVMIN
END IF
ELSE
SIGMA = SIGMA - SGNDEF * TAU
TAU = TWO * TAU
END IF
ELSE
* an initial RRR is found
GO TO 83
END IF
80 CONTINUE
* if the program reaches this point, no base representation could be
* found in MAXTRY iterations.
INFO = 2
RETURN
83 CONTINUE
* At this point, we have found an initial base representation
* T - SIGMA I = L D L^T with not too much element growth.
* Store the shift.
E( IEND ) = SIGMA
* Store D and L.
CALL SCOPY( IN, WORK, 1, D( IBEGIN ), 1 )
CALL SCOPY( IN-1, WORK( IN+1 ), 1, E( IBEGIN ), 1 )
IF(MB.GT.1 ) THEN
*
* Perturb each entry of the base representation by a small
* (but random) relative amount to overcome difficulties with
* glued matrices.
*
DO 122 I = 1, 4
ISEED( I ) = 1
122 CONTINUE
CALL SLARNV(2, ISEED, 2*IN-1, WORK(1))
DO 125 I = 1,IN-1
D(IBEGIN+I-1) = D(IBEGIN+I-1)*(ONE+EPS*PERT*WORK(I))
E(IBEGIN+I-1) = E(IBEGIN+I-1)*(ONE+EPS*PERT*WORK(IN+I))
125 CONTINUE
D(IEND) = D(IEND)*(ONE+EPS*FOUR*WORK(IN))
*
ENDIF
*
* Don't update the Gerschgorin intervals because keeping track
* of the updates would be too much work in SLARRV.
* We update W instead and use it to locate the proper Gerschgorin
* intervals.
* Compute the required eigenvalues of L D L' by bisection or dqds
IF ( .NOT.USEDQD ) THEN
* If SLARRD has been used, shift the eigenvalue approximations
* according to their representation. This is necessary for
* a uniform SLARRV since dqds computes eigenvalues of the
* shifted representation. In SLARRV, W will always hold the
* UNshifted eigenvalue approximation.
DO 134 J=WBEGIN,WEND
W(J) = W(J) - SIGMA
WERR(J) = WERR(J) + ABS(W(J)) * EPS
134 CONTINUE
* call SLARRB to reduce eigenvalue error of the approximations
* from SLARRD
DO 135 I = IBEGIN, IEND-1
WORK( I ) = D( I ) * E( I )**2
135 CONTINUE
* use bisection to find EV from INDL to INDU
CALL SLARRB(IN, D(IBEGIN), WORK(IBEGIN),
$ INDL, INDU, RTOL1, RTOL2, INDL-1,
$ W(WBEGIN), WGAP(WBEGIN), WERR(WBEGIN),
$ WORK( 2*N+1 ), IWORK, PIVMIN, SPDIAM,
$ IN, IINFO )
IF( IINFO .NE. 0 ) THEN
INFO = -4
RETURN
END IF
* SLARRB computes all gaps correctly except for the last one
* Record distance to VU/GU
WGAP( WEND ) = MAX( ZERO,
$ ( VU-SIGMA ) - ( W( WEND ) + WERR( WEND ) ) )
DO 138 I = INDL, INDU
M = M + 1
IBLOCK(M) = JBLK
INDEXW(M) = I
138 CONTINUE
ELSE
* Call dqds to get all eigs (and then possibly delete unwanted
* eigenvalues).
* Note that dqds finds the eigenvalues of the L D L^T representation
* of T to high relative accuracy. High relative accuracy
* might be lost when the shift of the RRR is subtracted to obtain
* the eigenvalues of T. However, T is not guaranteed to define its
* eigenvalues to high relative accuracy anyway.
* Set RTOL to the order of the tolerance used in SLASQ2
* This is an ESTIMATED error, the worst case bound is 4*N*EPS
* which is usually too large and requires unnecessary work to be
* done by bisection when computing the eigenvectors
RTOL = LOG(REAL(IN)) * FOUR * EPS
J = IBEGIN
DO 140 I = 1, IN - 1
WORK( 2*I-1 ) = ABS( D( J ) )
WORK( 2*I ) = E( J )*E( J )*WORK( 2*I-1 )
J = J + 1
140 CONTINUE
WORK( 2*IN-1 ) = ABS( D( IEND ) )
WORK( 2*IN ) = ZERO
CALL SLASQ2( IN, WORK, IINFO )
IF( IINFO .NE. 0 ) THEN
* If IINFO = -5 then an index is part of a tight cluster
* and should be changed. The index is in IWORK(1) and the
* gap is in WORK(N+1)
INFO = -5
RETURN
ELSE
* Test that all eigenvalues are positive as expected
DO 149 I = 1, IN
IF( WORK( I ).LT.ZERO ) THEN
INFO = -6
RETURN
ENDIF
149 CONTINUE
END IF
IF( SGNDEF.GT.ZERO ) THEN
DO 150 I = INDL, INDU
M = M + 1
W( M ) = WORK( IN-I+1 )
IBLOCK( M ) = JBLK
INDEXW( M ) = I
150 CONTINUE
ELSE
DO 160 I = INDL, INDU
M = M + 1
W( M ) = -WORK( I )
IBLOCK( M ) = JBLK
INDEXW( M ) = I
160 CONTINUE
END IF
DO 165 I = M - MB + 1, M
* the value of RTOL below should be the tolerance in SLASQ2
WERR( I ) = RTOL * ABS( W(I) )
165 CONTINUE
DO 166 I = M - MB + 1, M - 1
* compute the right gap between the intervals
WGAP( I ) = MAX( ZERO,
$ W(I+1)-WERR(I+1) - (W(I)+WERR(I)) )
166 CONTINUE
WGAP( M ) = MAX( ZERO,
$ ( VU-SIGMA ) - ( W( M ) + WERR( M ) ) )
END IF
* proceed with next block
IBEGIN = IEND + 1
WBEGIN = WEND + 1
170 CONTINUE
*
RETURN
*
* end of SLARRE
*
END
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -