⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 sgesvd.f

📁 famous linear algebra library (LAPACK) ports to windows
💻 F
📖 第 1 页 / 共 5 页
字号:
                     ITAUP = ITAUQ + N
                     IWORK = ITAUP + N
*
*                    Bidiagonalize R in WORK(IU), copying result to VT
*                    (Workspace: need N*N+4*N, prefer N*N+3*N+2*N*NB)
*
                     CALL SGEBRD( N, N, WORK( IU ), LDWRKU, S,
     $                            WORK( IE ), WORK( ITAUQ ),
     $                            WORK( ITAUP ), WORK( IWORK ),
     $                            LWORK-IWORK+1, IERR )
                     CALL SLACPY( 'U', N, N, WORK( IU ), LDWRKU, VT,
     $                            LDVT )
*
*                    Generate left bidiagonalizing vectors in WORK(IU)
*                    (Workspace: need N*N+4*N, prefer N*N+3*N+N*NB)
*
                     CALL SORGBR( 'Q', N, N, N, WORK( IU ), LDWRKU,
     $                            WORK( ITAUQ ), WORK( IWORK ),
     $                            LWORK-IWORK+1, IERR )
*
*                    Generate right bidiagonalizing vectors in VT
*                    (Workspace: need N*N+4*N-1,
*                                prefer N*N+3*N+(N-1)*NB)
*
                     CALL SORGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
                     IWORK = IE + N
*
*                    Perform bidiagonal QR iteration, computing left
*                    singular vectors of R in WORK(IU) and computing
*                    right singular vectors of R in VT
*                    (Workspace: need N*N+BDSPAC)
*
                     CALL SBDSQR( 'U', N, N, N, 0, S, WORK( IE ), VT,
     $                            LDVT, WORK( IU ), LDWRKU, DUM, 1,
     $                            WORK( IWORK ), INFO )
*
*                    Multiply Q in A by left singular vectors of R in
*                    WORK(IU), storing result in U
*                    (Workspace: need N*N)
*
                     CALL SGEMM( 'N', 'N', M, N, N, ONE, A, LDA,
     $                           WORK( IU ), LDWRKU, ZERO, U, LDU )
*
                  ELSE
*
*                    Insufficient workspace for a fast algorithm
*
                     ITAU = 1
                     IWORK = ITAU + N
*
*                    Compute A=Q*R, copying result to U
*                    (Workspace: need 2*N, prefer N+N*NB)
*
                     CALL SGEQRF( M, N, A, LDA, WORK( ITAU ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
                     CALL SLACPY( 'L', M, N, A, LDA, U, LDU )
*
*                    Generate Q in U
*                    (Workspace: need 2*N, prefer N+N*NB)
*
                     CALL SORGQR( M, N, N, U, LDU, WORK( ITAU ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
*
*                    Copy R to VT, zeroing out below it
*
                     CALL SLACPY( 'U', N, N, A, LDA, VT, LDVT )
                     IF( N.GT.1 )
     $                  CALL SLASET( 'L', N-1, N-1, ZERO, ZERO,
     $                               VT( 2, 1 ), LDVT )
                     IE = ITAU
                     ITAUQ = IE + N
                     ITAUP = ITAUQ + N
                     IWORK = ITAUP + N
*
*                    Bidiagonalize R in VT
*                    (Workspace: need 4*N, prefer 3*N+2*N*NB)
*
                     CALL SGEBRD( N, N, VT, LDVT, S, WORK( IE ),
     $                            WORK( ITAUQ ), WORK( ITAUP ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
*
*                    Multiply Q in U by left bidiagonalizing vectors
*                    in VT
*                    (Workspace: need 3*N+M, prefer 3*N+M*NB)
*
                     CALL SORMBR( 'Q', 'R', 'N', M, N, N, VT, LDVT,
     $                            WORK( ITAUQ ), U, LDU, WORK( IWORK ),
     $                            LWORK-IWORK+1, IERR )
*
*                    Generate right bidiagonalizing vectors in VT
*                    (Workspace: need 4*N-1, prefer 3*N+(N-1)*NB)
*
                     CALL SORGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
                     IWORK = IE + N
*
*                    Perform bidiagonal QR iteration, computing left
*                    singular vectors of A in U and computing right
*                    singular vectors of A in VT
*                    (Workspace: need BDSPAC)
*
                     CALL SBDSQR( 'U', N, N, M, 0, S, WORK( IE ), VT,
     $                            LDVT, U, LDU, DUM, 1, WORK( IWORK ),
     $                            INFO )
*
                  END IF
*
               END IF
*
            ELSE IF( WNTUA ) THEN
*
               IF( WNTVN ) THEN
*
*                 Path 7 (M much larger than N, JOBU='A', JOBVT='N')
*                 M left singular vectors to be computed in U and
*                 no right singular vectors to be computed
*
                  IF( LWORK.GE.N*N+MAX( N+M, 4*N, BDSPAC ) ) THEN
*
*                    Sufficient workspace for a fast algorithm
*
                     IR = 1
                     IF( LWORK.GE.WRKBL+LDA*N ) THEN
*
*                       WORK(IR) is LDA by N
*
                        LDWRKR = LDA
                     ELSE
*
*                       WORK(IR) is N by N
*
                        LDWRKR = N
                     END IF
                     ITAU = IR + LDWRKR*N
                     IWORK = ITAU + N
*
*                    Compute A=Q*R, copying result to U
*                    (Workspace: need N*N+2*N, prefer N*N+N+N*NB)
*
                     CALL SGEQRF( M, N, A, LDA, WORK( ITAU ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
                     CALL SLACPY( 'L', M, N, A, LDA, U, LDU )
*
*                    Copy R to WORK(IR), zeroing out below it
*
                     CALL SLACPY( 'U', N, N, A, LDA, WORK( IR ),
     $                            LDWRKR )
                     CALL SLASET( 'L', N-1, N-1, ZERO, ZERO,
     $                            WORK( IR+1 ), LDWRKR )
*
*                    Generate Q in U
*                    (Workspace: need N*N+N+M, prefer N*N+N+M*NB)
*
                     CALL SORGQR( M, M, N, U, LDU, WORK( ITAU ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
                     IE = ITAU
                     ITAUQ = IE + N
                     ITAUP = ITAUQ + N
                     IWORK = ITAUP + N
*
*                    Bidiagonalize R in WORK(IR)
*                    (Workspace: need N*N+4*N, prefer N*N+3*N+2*N*NB)
*
                     CALL SGEBRD( N, N, WORK( IR ), LDWRKR, S,
     $                            WORK( IE ), WORK( ITAUQ ),
     $                            WORK( ITAUP ), WORK( IWORK ),
     $                            LWORK-IWORK+1, IERR )
*
*                    Generate left bidiagonalizing vectors in WORK(IR)
*                    (Workspace: need N*N+4*N, prefer N*N+3*N+N*NB)
*
                     CALL SORGBR( 'Q', N, N, N, WORK( IR ), LDWRKR,
     $                            WORK( ITAUQ ), WORK( IWORK ),
     $                            LWORK-IWORK+1, IERR )
                     IWORK = IE + N
*
*                    Perform bidiagonal QR iteration, computing left
*                    singular vectors of R in WORK(IR)
*                    (Workspace: need N*N+BDSPAC)
*
                     CALL SBDSQR( 'U', N, 0, N, 0, S, WORK( IE ), DUM,
     $                            1, WORK( IR ), LDWRKR, DUM, 1,
     $                            WORK( IWORK ), INFO )
*
*                    Multiply Q in U by left singular vectors of R in
*                    WORK(IR), storing result in A
*                    (Workspace: need N*N)
*
                     CALL SGEMM( 'N', 'N', M, N, N, ONE, U, LDU,
     $                           WORK( IR ), LDWRKR, ZERO, A, LDA )
*
*                    Copy left singular vectors of A from A to U
*
                     CALL SLACPY( 'F', M, N, A, LDA, U, LDU )
*
                  ELSE
*
*                    Insufficient workspace for a fast algorithm
*
                     ITAU = 1
                     IWORK = ITAU + N
*
*                    Compute A=Q*R, copying result to U
*                    (Workspace: need 2*N, prefer N+N*NB)
*
                     CALL SGEQRF( M, N, A, LDA, WORK( ITAU ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
                     CALL SLACPY( 'L', M, N, A, LDA, U, LDU )
*
*                    Generate Q in U
*                    (Workspace: need N+M, prefer N+M*NB)
*
                     CALL SORGQR( M, M, N, U, LDU, WORK( ITAU ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
                     IE = ITAU
                     ITAUQ = IE + N
                     ITAUP = ITAUQ + N
                     IWORK = ITAUP + N
*
*                    Zero out below R in A
*
                     CALL SLASET( 'L', N-1, N-1, ZERO, ZERO, A( 2, 1 ),
     $                            LDA )
*
*                    Bidiagonalize R in A
*                    (Workspace: need 4*N, prefer 3*N+2*N*NB)
*
                     CALL SGEBRD( N, N, A, LDA, S, WORK( IE ),
     $                            WORK( ITAUQ ), WORK( ITAUP ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
*
*                    Multiply Q in U by left bidiagonalizing vectors
*                    in A
*                    (Workspace: need 3*N+M, prefer 3*N+M*NB)
*
                     CALL SORMBR( 'Q', 'R', 'N', M, N, N, A, LDA,
     $                            WORK( ITAUQ ), U, LDU, WORK( IWORK ),
     $                            LWORK-IWORK+1, IERR )
                     IWORK = IE + N
*
*                    Perform bidiagonal QR iteration, computing left
*                    singular vectors of A in U
*                    (Workspace: need BDSPAC)
*
                     CALL SBDSQR( 'U', N, 0, M, 0, S, WORK( IE ), DUM,
     $                            1, U, LDU, DUM, 1, WORK( IWORK ),
     $                            INFO )
*
                  END IF
*
               ELSE IF( WNTVO ) THEN
*
*                 Path 8 (M much larger than N, JOBU='A', JOBVT='O')
*                 M left singular vectors to be computed in U and
*                 N right singular vectors to be overwritten on A
*
                  IF( LWORK.GE.2*N*N+MAX( N+M, 4*N, BDSPAC ) ) THEN
*
*                    Sufficient workspace for a fast algorithm
*
                     IU = 1
                     IF( LWORK.GE.WRKBL+2*LDA*N ) THEN
*
*                       WORK(IU) is LDA by N and WORK(IR) is LDA by N
*
                        LDWRKU = LDA
                        IR = IU + LDWRKU*N
                        LDWRKR = LDA
                     ELSE IF( LWORK.GE.WRKBL+( LDA+N )*N ) THEN
*
*                       WORK(IU) is LDA by N and WORK(IR) is N by N
*
                        LDWRKU = LDA
                        IR = IU + LDWRKU*N
                        LDWRKR = N
                     ELSE
*
*                       WORK(IU) is N by N and WORK(IR) is N by N
*
                        LDWRKU = N
                        IR = IU + LDWRKU*N
                        LDWRKR = N
                     END IF
                     ITAU = IR + LDWRKR*N
                     IWORK = ITAU + N
*
*                    Compute A=Q*R, copying result to U
*                    (Workspace: need 2*N*N+2*N, prefer 2*N*N+N+N*NB)
*
                     CALL SGEQRF( M, N, A, LDA, WORK( ITAU ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
                     CALL SLACPY( 'L', M, N, A, LDA, U, LDU )
*
*                    Generate Q in U
*                    (Workspace: need 2*N*N+N+M, prefer 2*N*N+N+M*NB)
*
                     CALL SORGQR( M, M, N, U, LDU, WORK( ITAU ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
*
*                    Copy R to WORK(IU), zeroing out below it
*
                     CALL SLACPY( 'U', N, N, A, LDA, WORK( IU ),
     $                            LDWRKU )
                     CALL SLASET( 'L', N-1, N-1, ZERO, ZERO,
     $                            WORK( IU+1 ), LDWRKU )
                     IE = ITAU
                     ITAUQ = IE + N
                     ITAUP = ITAUQ + N
                     IWORK = ITAUP + N
*
*                    Bidiagonalize R in WORK(IU), copying result to
*                    WORK(IR)
*                    (Workspace: need 2*N*N+4*N,
*                                prefer 2*N*N+3*N+2*N*NB)
*
                     CALL SGEBRD( N, N, WORK( IU ), LDWRKU, S,
     $                            WORK( IE ), WORK( ITAUQ ),
     $                            WORK( IT

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -