⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 sgesvd.f

📁 famous linear algebra library (LAPACK) ports to windows
💻 F
📖 第 1 页 / 共 5 页
字号:
*
            ELSE IF( WNTUO .AND. WNTVN ) THEN
*
*              Path 2 (M much larger than N, JOBU='O', JOBVT='N')
*              N left singular vectors to be overwritten on A and
*              no right singular vectors to be computed
*
               IF( LWORK.GE.N*N+MAX( 4*N, BDSPAC ) ) THEN
*
*                 Sufficient workspace for a fast algorithm
*
                  IR = 1
                  IF( LWORK.GE.MAX( WRKBL, LDA*N+N )+LDA*N ) THEN
*
*                    WORK(IU) is LDA by N, WORK(IR) is LDA by N
*
                     LDWRKU = LDA
                     LDWRKR = LDA
                  ELSE IF( LWORK.GE.MAX( WRKBL, LDA*N+N )+N*N ) THEN
*
*                    WORK(IU) is LDA by N, WORK(IR) is N by N
*
                     LDWRKU = LDA
                     LDWRKR = N
                  ELSE
*
*                    WORK(IU) is LDWRKU by N, WORK(IR) is N by N
*
                     LDWRKU = ( LWORK-N*N-N ) / N
                     LDWRKR = N
                  END IF
                  ITAU = IR + LDWRKR*N
                  IWORK = ITAU + N
*
*                 Compute A=Q*R
*                 (Workspace: need N*N+2*N, prefer N*N+N+N*NB)
*
                  CALL SGEQRF( M, N, A, LDA, WORK( ITAU ),
     $                         WORK( IWORK ), LWORK-IWORK+1, IERR )
*
*                 Copy R to WORK(IR) and zero out below it
*
                  CALL SLACPY( 'U', N, N, A, LDA, WORK( IR ), LDWRKR )
                  CALL SLASET( 'L', N-1, N-1, ZERO, ZERO, WORK( IR+1 ),
     $                         LDWRKR )
*
*                 Generate Q in A
*                 (Workspace: need N*N+2*N, prefer N*N+N+N*NB)
*
                  CALL SORGQR( M, N, N, A, LDA, WORK( ITAU ),
     $                         WORK( IWORK ), LWORK-IWORK+1, IERR )
                  IE = ITAU
                  ITAUQ = IE + N
                  ITAUP = ITAUQ + N
                  IWORK = ITAUP + N
*
*                 Bidiagonalize R in WORK(IR)
*                 (Workspace: need N*N+4*N, prefer N*N+3*N+2*N*NB)
*
                  CALL SGEBRD( N, N, WORK( IR ), LDWRKR, S, WORK( IE ),
     $                         WORK( ITAUQ ), WORK( ITAUP ),
     $                         WORK( IWORK ), LWORK-IWORK+1, IERR )
*
*                 Generate left vectors bidiagonalizing R
*                 (Workspace: need N*N+4*N, prefer N*N+3*N+N*NB)
*
                  CALL SORGBR( 'Q', N, N, N, WORK( IR ), LDWRKR,
     $                         WORK( ITAUQ ), WORK( IWORK ),
     $                         LWORK-IWORK+1, IERR )
                  IWORK = IE + N
*
*                 Perform bidiagonal QR iteration, computing left
*                 singular vectors of R in WORK(IR)
*                 (Workspace: need N*N+BDSPAC)
*
                  CALL SBDSQR( 'U', N, 0, N, 0, S, WORK( IE ), DUM, 1,
     $                         WORK( IR ), LDWRKR, DUM, 1,
     $                         WORK( IWORK ), INFO )
                  IU = IE + N
*
*                 Multiply Q in A by left singular vectors of R in
*                 WORK(IR), storing result in WORK(IU) and copying to A
*                 (Workspace: need N*N+2*N, prefer N*N+M*N+N)
*
                  DO 10 I = 1, M, LDWRKU
                     CHUNK = MIN( M-I+1, LDWRKU )
                     CALL SGEMM( 'N', 'N', CHUNK, N, N, ONE, A( I, 1 ),
     $                           LDA, WORK( IR ), LDWRKR, ZERO,
     $                           WORK( IU ), LDWRKU )
                     CALL SLACPY( 'F', CHUNK, N, WORK( IU ), LDWRKU,
     $                            A( I, 1 ), LDA )
   10             CONTINUE
*
               ELSE
*
*                 Insufficient workspace for a fast algorithm
*
                  IE = 1
                  ITAUQ = IE + N
                  ITAUP = ITAUQ + N
                  IWORK = ITAUP + N
*
*                 Bidiagonalize A
*                 (Workspace: need 3*N+M, prefer 3*N+(M+N)*NB)
*
                  CALL SGEBRD( M, N, A, LDA, S, WORK( IE ),
     $                         WORK( ITAUQ ), WORK( ITAUP ),
     $                         WORK( IWORK ), LWORK-IWORK+1, IERR )
*
*                 Generate left vectors bidiagonalizing A
*                 (Workspace: need 4*N, prefer 3*N+N*NB)
*
                  CALL SORGBR( 'Q', M, N, N, A, LDA, WORK( ITAUQ ),
     $                         WORK( IWORK ), LWORK-IWORK+1, IERR )
                  IWORK = IE + N
*
*                 Perform bidiagonal QR iteration, computing left
*                 singular vectors of A in A
*                 (Workspace: need BDSPAC)
*
                  CALL SBDSQR( 'U', N, 0, M, 0, S, WORK( IE ), DUM, 1,
     $                         A, LDA, DUM, 1, WORK( IWORK ), INFO )
*
               END IF
*
            ELSE IF( WNTUO .AND. WNTVAS ) THEN
*
*              Path 3 (M much larger than N, JOBU='O', JOBVT='S' or 'A')
*              N left singular vectors to be overwritten on A and
*              N right singular vectors to be computed in VT
*
               IF( LWORK.GE.N*N+MAX( 4*N, BDSPAC ) ) THEN
*
*                 Sufficient workspace for a fast algorithm
*
                  IR = 1
                  IF( LWORK.GE.MAX( WRKBL, LDA*N+N )+LDA*N ) THEN
*
*                    WORK(IU) is LDA by N and WORK(IR) is LDA by N
*
                     LDWRKU = LDA
                     LDWRKR = LDA
                  ELSE IF( LWORK.GE.MAX( WRKBL, LDA*N+N )+N*N ) THEN
*
*                    WORK(IU) is LDA by N and WORK(IR) is N by N
*
                     LDWRKU = LDA
                     LDWRKR = N
                  ELSE
*
*                    WORK(IU) is LDWRKU by N and WORK(IR) is N by N
*
                     LDWRKU = ( LWORK-N*N-N ) / N
                     LDWRKR = N
                  END IF
                  ITAU = IR + LDWRKR*N
                  IWORK = ITAU + N
*
*                 Compute A=Q*R
*                 (Workspace: need N*N+2*N, prefer N*N+N+N*NB)
*
                  CALL SGEQRF( M, N, A, LDA, WORK( ITAU ),
     $                         WORK( IWORK ), LWORK-IWORK+1, IERR )
*
*                 Copy R to VT, zeroing out below it
*
                  CALL SLACPY( 'U', N, N, A, LDA, VT, LDVT )
                  IF( N.GT.1 )
     $               CALL SLASET( 'L', N-1, N-1, ZERO, ZERO,
     $                            VT( 2, 1 ), LDVT )
*
*                 Generate Q in A
*                 (Workspace: need N*N+2*N, prefer N*N+N+N*NB)
*
                  CALL SORGQR( M, N, N, A, LDA, WORK( ITAU ),
     $                         WORK( IWORK ), LWORK-IWORK+1, IERR )
                  IE = ITAU
                  ITAUQ = IE + N
                  ITAUP = ITAUQ + N
                  IWORK = ITAUP + N
*
*                 Bidiagonalize R in VT, copying result to WORK(IR)
*                 (Workspace: need N*N+4*N, prefer N*N+3*N+2*N*NB)
*
                  CALL SGEBRD( N, N, VT, LDVT, S, WORK( IE ),
     $                         WORK( ITAUQ ), WORK( ITAUP ),
     $                         WORK( IWORK ), LWORK-IWORK+1, IERR )
                  CALL SLACPY( 'L', N, N, VT, LDVT, WORK( IR ), LDWRKR )
*
*                 Generate left vectors bidiagonalizing R in WORK(IR)
*                 (Workspace: need N*N+4*N, prefer N*N+3*N+N*NB)
*
                  CALL SORGBR( 'Q', N, N, N, WORK( IR ), LDWRKR,
     $                         WORK( ITAUQ ), WORK( IWORK ),
     $                         LWORK-IWORK+1, IERR )
*
*                 Generate right vectors bidiagonalizing R in VT
*                 (Workspace: need N*N+4*N-1, prefer N*N+3*N+(N-1)*NB)
*
                  CALL SORGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
     $                         WORK( IWORK ), LWORK-IWORK+1, IERR )
                  IWORK = IE + N
*
*                 Perform bidiagonal QR iteration, computing left
*                 singular vectors of R in WORK(IR) and computing right
*                 singular vectors of R in VT
*                 (Workspace: need N*N+BDSPAC)
*
                  CALL SBDSQR( 'U', N, N, N, 0, S, WORK( IE ), VT, LDVT,
     $                         WORK( IR ), LDWRKR, DUM, 1,
     $                         WORK( IWORK ), INFO )
                  IU = IE + N
*
*                 Multiply Q in A by left singular vectors of R in
*                 WORK(IR), storing result in WORK(IU) and copying to A
*                 (Workspace: need N*N+2*N, prefer N*N+M*N+N)
*
                  DO 20 I = 1, M, LDWRKU
                     CHUNK = MIN( M-I+1, LDWRKU )
                     CALL SGEMM( 'N', 'N', CHUNK, N, N, ONE, A( I, 1 ),
     $                           LDA, WORK( IR ), LDWRKR, ZERO,
     $                           WORK( IU ), LDWRKU )
                     CALL SLACPY( 'F', CHUNK, N, WORK( IU ), LDWRKU,
     $                            A( I, 1 ), LDA )
   20             CONTINUE
*
               ELSE
*
*                 Insufficient workspace for a fast algorithm
*
                  ITAU = 1
                  IWORK = ITAU + N
*
*                 Compute A=Q*R
*                 (Workspace: need 2*N, prefer N+N*NB)
*
                  CALL SGEQRF( M, N, A, LDA, WORK( ITAU ),
     $                         WORK( IWORK ), LWORK-IWORK+1, IERR )
*
*                 Copy R to VT, zeroing out below it
*
                  CALL SLACPY( 'U', N, N, A, LDA, VT, LDVT )
                  IF( N.GT.1 )
     $               CALL SLASET( 'L', N-1, N-1, ZERO, ZERO,
     $                            VT( 2, 1 ), LDVT )
*
*                 Generate Q in A
*                 (Workspace: need 2*N, prefer N+N*NB)
*
                  CALL SORGQR( M, N, N, A, LDA, WORK( ITAU ),
     $                         WORK( IWORK ), LWORK-IWORK+1, IERR )
                  IE = ITAU
                  ITAUQ = IE + N
                  ITAUP = ITAUQ + N
                  IWORK = ITAUP + N
*
*                 Bidiagonalize R in VT
*                 (Workspace: need 4*N, prefer 3*N+2*N*NB)
*
                  CALL SGEBRD( N, N, VT, LDVT, S, WORK( IE ),
     $                         WORK( ITAUQ ), WORK( ITAUP ),
     $                         WORK( IWORK ), LWORK-IWORK+1, IERR )
*
*                 Multiply Q in A by left vectors bidiagonalizing R
*                 (Workspace: need 3*N+M, prefer 3*N+M*NB)
*
                  CALL SORMBR( 'Q', 'R', 'N', M, N, N, VT, LDVT,
     $                         WORK( ITAUQ ), A, LDA, WORK( IWORK ),
     $                         LWORK-IWORK+1, IERR )
*
*                 Generate right vectors bidiagonalizing R in VT
*                 (Workspace: need 4*N-1, prefer 3*N+(N-1)*NB)
*
                  CALL SORGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
     $                         WORK( IWORK ), LWORK-IWORK+1, IERR )
                  IWORK = IE + N
*
*                 Perform bidiagonal QR iteration, computing left
*                 singular vectors of A in A and computing right
*                 singular vectors of A in VT
*                 (Workspace: need BDSPAC)
*
                  CALL SBDSQR( 'U', N, N, M, 0, S, WORK( IE ), VT, LDVT,
     $                         A, LDA, DUM, 1, WORK( IWORK ), INFO )
*
               END IF
*
            ELSE IF( WNTUS ) THEN
*
               IF( WNTVN ) THEN
*
*                 Path 4 (M much larger than N, JOBU='S', JOBVT='N')
*                 N left singular vectors to be computed in U and
*                 no right singular vectors to be computed
*
                  IF( LWORK.GE.N*N+MAX( 4*N, BDSPAC ) ) THEN
*
*                    Sufficient workspace for a fast algorithm
*
                     IR = 1
                     IF( LWORK.GE.WRKBL+LDA*N ) THEN
*
*                       WORK(IR) is LDA by N
*
                        LDWRKR = LDA
                     ELSE
*
*                       WORK(IR) is N by N
*
                        LDWRKR = N
                     END IF
                     ITAU = IR + LDWRKR*N
                     IWORK = ITAU + N
*
*                    Compute A=Q*R
*                    (Workspace: need N*N+2*N, prefer N*N+N+N*NB)
*
                     CALL SGEQRF( M, N, A, LDA, WORK( ITAU ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -