⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dlaqr0.f

📁 famous linear algebra library (LAPACK) ports to windows
💻 F
📖 第 1 页 / 共 2 页
字号:
      SUBROUTINE DLAQR0( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI,
     $                   ILOZ, IHIZ, Z, LDZ, WORK, LWORK, INFO )
*
*  -- LAPACK auxiliary routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      INTEGER            IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, LWORK, N
      LOGICAL            WANTT, WANTZ
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   H( LDH, * ), WI( * ), WORK( * ), WR( * ),
     $                   Z( LDZ, * )
*     ..
*
*     Purpose
*     =======
*
*     DLAQR0 computes the eigenvalues of a Hessenberg matrix H
*     and, optionally, the matrices T and Z from the Schur decomposition
*     H = Z T Z**T, where T is an upper quasi-triangular matrix (the
*     Schur form), and Z is the orthogonal matrix of Schur vectors.
*
*     Optionally Z may be postmultiplied into an input orthogonal
*     matrix Q so that this routine can give the Schur factorization
*     of a matrix A which has been reduced to the Hessenberg form H
*     by the orthogonal matrix Q:  A = Q*H*Q**T = (QZ)*T*(QZ)**T.
*
*     Arguments
*     =========
*
*     WANTT   (input) LOGICAL
*          = .TRUE. : the full Schur form T is required;
*          = .FALSE.: only eigenvalues are required.
*
*     WANTZ   (input) LOGICAL
*          = .TRUE. : the matrix of Schur vectors Z is required;
*          = .FALSE.: Schur vectors are not required.
*
*     N     (input) INTEGER
*           The order of the matrix H.  N .GE. 0.
*
*     ILO   (input) INTEGER
*     IHI   (input) INTEGER
*           It is assumed that H is already upper triangular in rows
*           and columns 1:ILO-1 and IHI+1:N and, if ILO.GT.1,
*           H(ILO,ILO-1) is zero. ILO and IHI are normally set by a
*           previous call to DGEBAL, and then passed to DGEHRD when the
*           matrix output by DGEBAL is reduced to Hessenberg form.
*           Otherwise, ILO and IHI should be set to 1 and N,
*           respectively.  If N.GT.0, then 1.LE.ILO.LE.IHI.LE.N.
*           If N = 0, then ILO = 1 and IHI = 0.
*
*     H     (input/output) DOUBLE PRECISION array, dimension (LDH,N)
*           On entry, the upper Hessenberg matrix H.
*           On exit, if INFO = 0 and WANTT is .TRUE., then H contains
*           the upper quasi-triangular matrix T from the Schur
*           decomposition (the Schur form); 2-by-2 diagonal blocks
*           (corresponding to complex conjugate pairs of eigenvalues)
*           are returned in standard form, with H(i,i) = H(i+1,i+1)
*           and H(i+1,i)*H(i,i+1).LT.0. If INFO = 0 and WANTT is
*           .FALSE., then the contents of H are unspecified on exit.
*           (The output value of H when INFO.GT.0 is given under the
*           description of INFO below.)
*
*           This subroutine may explicitly set H(i,j) = 0 for i.GT.j and
*           j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N.
*
*     LDH   (input) INTEGER
*           The leading dimension of the array H. LDH .GE. max(1,N).
*
*     WR    (output) DOUBLE PRECISION array, dimension (IHI)
*     WI    (output) DOUBLE PRECISION array, dimension (IHI)
*           The real and imaginary parts, respectively, of the computed
*           eigenvalues of H(ILO:IHI,ILO:IHI) are stored WR(ILO:IHI)
*           and WI(ILO:IHI). If two eigenvalues are computed as a
*           complex conjugate pair, they are stored in consecutive
*           elements of WR and WI, say the i-th and (i+1)th, with
*           WI(i) .GT. 0 and WI(i+1) .LT. 0. If WANTT is .TRUE., then
*           the eigenvalues are stored in the same order as on the
*           diagonal of the Schur form returned in H, with
*           WR(i) = H(i,i) and, if H(i:i+1,i:i+1) is a 2-by-2 diagonal
*           block, WI(i) = sqrt(-H(i+1,i)*H(i,i+1)) and
*           WI(i+1) = -WI(i).
*
*     ILOZ     (input) INTEGER
*     IHIZ     (input) INTEGER
*           Specify the rows of Z to which transformations must be
*           applied if WANTZ is .TRUE..
*           1 .LE. ILOZ .LE. ILO; IHI .LE. IHIZ .LE. N.
*
*     Z     (input/output) DOUBLE PRECISION array, dimension (LDZ,IHI)
*           If WANTZ is .FALSE., then Z is not referenced.
*           If WANTZ is .TRUE., then Z(ILO:IHI,ILOZ:IHIZ) is
*           replaced by Z(ILO:IHI,ILOZ:IHIZ)*U where U is the
*           orthogonal Schur factor of H(ILO:IHI,ILO:IHI).
*           (The output value of Z when INFO.GT.0 is given under
*           the description of INFO below.)
*
*     LDZ   (input) INTEGER
*           The leading dimension of the array Z.  if WANTZ is .TRUE.
*           then LDZ.GE.MAX(1,IHIZ).  Otherwize, LDZ.GE.1.
*
*     WORK  (workspace/output) DOUBLE PRECISION array, dimension LWORK
*           On exit, if LWORK = -1, WORK(1) returns an estimate of
*           the optimal value for LWORK.
*
*     LWORK (input) INTEGER
*           The dimension of the array WORK.  LWORK .GE. max(1,N)
*           is sufficient, but LWORK typically as large as 6*N may
*           be required for optimal performance.  A workspace query
*           to determine the optimal workspace size is recommended.
*
*           If LWORK = -1, then DLAQR0 does a workspace query.
*           In this case, DLAQR0 checks the input parameters and
*           estimates the optimal workspace size for the given
*           values of N, ILO and IHI.  The estimate is returned
*           in WORK(1).  No error message related to LWORK is
*           issued by XERBLA.  Neither H nor Z are accessed.
*
*
*     INFO  (output) INTEGER
*             =  0:  successful exit
*           .GT. 0:  if INFO = i, DLAQR0 failed to compute all of
*                the eigenvalues.  Elements 1:ilo-1 and i+1:n of WR
*                and WI contain those eigenvalues which have been
*                successfully computed.  (Failures are rare.)
*
*                If INFO .GT. 0 and WANT is .FALSE., then on exit,
*                the remaining unconverged eigenvalues are the eigen-
*                values of the upper Hessenberg matrix rows and
*                columns ILO through INFO of the final, output
*                value of H.
*
*                If INFO .GT. 0 and WANTT is .TRUE., then on exit
*
*           (*)  (initial value of H)*U  = U*(final value of H)
*
*                where U is an orthogonal matrix.  The final
*                value of H is upper Hessenberg and quasi-triangular
*                in rows and columns INFO+1 through IHI.
*
*                If INFO .GT. 0 and WANTZ is .TRUE., then on exit
*
*                  (final value of Z(ILO:IHI,ILOZ:IHIZ)
*                   =  (initial value of Z(ILO:IHI,ILOZ:IHIZ)*U
*
*                where U is the orthogonal matrix in (*) (regard-
*                less of the value of WANTT.)
*
*                If INFO .GT. 0 and WANTZ is .FALSE., then Z is not
*                accessed.
*
*
*     ================================================================
*     Based on contributions by
*        Karen Braman and Ralph Byers, Department of Mathematics,
*        University of Kansas, USA
*
*     ================================================================
*
*     References:
*       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
*       Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
*       Performance, SIAM Journal of Matrix Analysis, volume 23, pages
*       929--947, 2002.
*
*       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
*       Algorithm Part II: Aggressive Early Deflation, SIAM Journal
*       of Matrix Analysis, volume 23, pages 948--973, 2002.
*
*     ================================================================
*     .. Parameters ..
*
*     ==== Matrices of order NTINY or smaller must be processed by
*     .    DLAHQR because of insufficient subdiagonal scratch space.
*     .    (This is a hard limit.) ====
*
*     ==== Exceptional deflation windows:  try to cure rare
*     .    slow convergence by increasing the size of the
*     .    deflation window after KEXNW iterations. =====
*
*     ==== Exceptional shifts: try to cure rare slow convergence
*     .    with ad-hoc exceptional shifts every KEXSH iterations.
*     .    The constants WILK1 and WILK2 are used to form the
*     .    exceptional shifts. ====
*
      INTEGER            NTINY
      PARAMETER          ( NTINY = 11 )
      INTEGER            KEXNW, KEXSH
      PARAMETER          ( KEXNW = 5, KEXSH = 6 )
      DOUBLE PRECISION   WILK1, WILK2
      PARAMETER          ( WILK1 = 0.75d0, WILK2 = -0.4375d0 )
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0d0, ONE = 1.0d0 )
*     ..
*     .. Local Scalars ..
      DOUBLE PRECISION   AA, BB, CC, CS, DD, SN, SS, SWAP
      INTEGER            I, INF, IT, ITMAX, K, KACC22, KBOT, KDU, KS,
     $                   KT, KTOP, KU, KV, KWH, KWTOP, KWV, LD, LS,
     $                   LWKOPT, NDFL, NH, NHO, NIBBLE, NMIN, NS, NSMAX,
     $                   NSR, NVE, NW, NWMAX, NWR
      LOGICAL            NWINC, SORTED
      CHARACTER          JBCMPZ*2
*     ..
*     .. External Functions ..
      INTEGER            ILAENV
      EXTERNAL           ILAENV
*     ..
*     .. Local Arrays ..
      DOUBLE PRECISION   ZDUM( 1, 1 )
*     ..
*     .. External Subroutines ..
      EXTERNAL           DLACPY, DLAHQR, DLANV2, DLAQR3, DLAQR4, DLAQR5
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, DBLE, INT, MAX, MIN, MOD
*     ..
*     .. Executable Statements ..
      INFO = 0
*
*     ==== Quick return for N = 0: nothing to do. ====
*
      IF( N.EQ.0 ) THEN
         WORK( 1 ) = ONE
         RETURN
      END IF
*
*     ==== Set up job flags for ILAENV. ====
*
      IF( WANTT ) THEN
         JBCMPZ( 1: 1 ) = 'S'
      ELSE
         JBCMPZ( 1: 1 ) = 'E'
      END IF
      IF( WANTZ ) THEN
         JBCMPZ( 2: 2 ) = 'V'
      ELSE
         JBCMPZ( 2: 2 ) = 'N'
      END IF
*
*     ==== Tiny matrices must use DLAHQR. ====
*
      IF( N.LE.NTINY ) THEN
*
*        ==== Estimate optimal workspace. ====
*
         LWKOPT = 1
         IF( LWORK.NE.-1 )
     $      CALL DLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI,
     $                   ILOZ, IHIZ, Z, LDZ, INFO )
      ELSE
*
*        ==== Use small bulge multi-shift QR with aggressive early
*        .    deflation on larger-than-tiny matrices. ====
*
*        ==== Hope for the best. ====
*
         INFO = 0
*
*        ==== NWR = recommended deflation window size.  At this
*        .    point,  N .GT. NTINY = 11, so there is enough
*        .    subdiagonal workspace for NWR.GE.2 as required.
*        .    (In fact, there is enough subdiagonal space for
*        .    NWR.GE.3.) ====
*
         NWR = ILAENV( 13, 'DLAQR0', JBCMPZ, N, ILO, IHI, LWORK )
         NWR = MAX( 2, NWR )
         NWR = MIN( IHI-ILO+1, ( N-1 ) / 3, NWR )
         NW = NWR
*
*        ==== NSR = recommended number of simultaneous shifts.
*        .    At this point N .GT. NTINY = 11, so there is at
*        .    enough subdiagonal workspace for NSR to be even
*        .    and greater than or equal to two as required. ====
*
         NSR = ILAENV( 15, 'DLAQR0', JBCMPZ, N, ILO, IHI, LWORK )
         NSR = MIN( NSR, ( N+6 ) / 9, IHI-ILO )
         NSR = MAX( 2, NSR-MOD( NSR, 2 ) )
*
*        ==== Estimate optimal workspace ====
*
*        ==== Workspace query call to DLAQR3 ====
*
         CALL DLAQR3( WANTT, WANTZ, N, ILO, IHI, NWR+1, H, LDH, ILOZ,
     $                IHIZ, Z, LDZ, LS, LD, WR, WI, H, LDH, N, H, LDH,
     $                N, H, LDH, WORK, -1 )
*
*        ==== Optimal workspace = MAX(DLAQR5, DLAQR3) ====
*
         LWKOPT = MAX( 3*NSR / 2, INT( WORK( 1 ) ) )
*
*        ==== Quick return in case of workspace query. ====
*
         IF( LWORK.EQ.-1 ) THEN
            WORK( 1 ) = DBLE( LWKOPT )
            RETURN
         END IF
*
*        ==== DLAHQR/DLAQR0 crossover point ====
*
         NMIN = ILAENV( 12, 'DLAQR0', JBCMPZ, N, ILO, IHI, LWORK )
         NMIN = MAX( NTINY, NMIN )
*
*        ==== Nibble crossover point ====
*
         NIBBLE = ILAENV( 14, 'DLAQR0', JBCMPZ, N, ILO, IHI, LWORK )
         NIBBLE = MAX( 0, NIBBLE )
*
*        ==== Accumulate reflections during ttswp?  Use block
*        .    2-by-2 structure during matrix-matrix multiply? ====
*
         KACC22 = ILAENV( 16, 'DLAQR0', JBCMPZ, N, ILO, IHI, LWORK )
         KACC22 = MAX( 0, KACC22 )
         KACC22 = MIN( 2, KACC22 )
*
*        ==== NWMAX = the largest possible deflation window for
*        .    which there is sufficient workspace. ====
*
         NWMAX = MIN( ( N-1 ) / 3, LWORK / 2 )
*

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -