📄 dlaqr0.f
字号:
SUBROUTINE DLAQR0( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI,
$ ILOZ, IHIZ, Z, LDZ, WORK, LWORK, INFO )
*
* -- LAPACK auxiliary routine (version 3.1) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
INTEGER IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, LWORK, N
LOGICAL WANTT, WANTZ
* ..
* .. Array Arguments ..
DOUBLE PRECISION H( LDH, * ), WI( * ), WORK( * ), WR( * ),
$ Z( LDZ, * )
* ..
*
* Purpose
* =======
*
* DLAQR0 computes the eigenvalues of a Hessenberg matrix H
* and, optionally, the matrices T and Z from the Schur decomposition
* H = Z T Z**T, where T is an upper quasi-triangular matrix (the
* Schur form), and Z is the orthogonal matrix of Schur vectors.
*
* Optionally Z may be postmultiplied into an input orthogonal
* matrix Q so that this routine can give the Schur factorization
* of a matrix A which has been reduced to the Hessenberg form H
* by the orthogonal matrix Q: A = Q*H*Q**T = (QZ)*T*(QZ)**T.
*
* Arguments
* =========
*
* WANTT (input) LOGICAL
* = .TRUE. : the full Schur form T is required;
* = .FALSE.: only eigenvalues are required.
*
* WANTZ (input) LOGICAL
* = .TRUE. : the matrix of Schur vectors Z is required;
* = .FALSE.: Schur vectors are not required.
*
* N (input) INTEGER
* The order of the matrix H. N .GE. 0.
*
* ILO (input) INTEGER
* IHI (input) INTEGER
* It is assumed that H is already upper triangular in rows
* and columns 1:ILO-1 and IHI+1:N and, if ILO.GT.1,
* H(ILO,ILO-1) is zero. ILO and IHI are normally set by a
* previous call to DGEBAL, and then passed to DGEHRD when the
* matrix output by DGEBAL is reduced to Hessenberg form.
* Otherwise, ILO and IHI should be set to 1 and N,
* respectively. If N.GT.0, then 1.LE.ILO.LE.IHI.LE.N.
* If N = 0, then ILO = 1 and IHI = 0.
*
* H (input/output) DOUBLE PRECISION array, dimension (LDH,N)
* On entry, the upper Hessenberg matrix H.
* On exit, if INFO = 0 and WANTT is .TRUE., then H contains
* the upper quasi-triangular matrix T from the Schur
* decomposition (the Schur form); 2-by-2 diagonal blocks
* (corresponding to complex conjugate pairs of eigenvalues)
* are returned in standard form, with H(i,i) = H(i+1,i+1)
* and H(i+1,i)*H(i,i+1).LT.0. If INFO = 0 and WANTT is
* .FALSE., then the contents of H are unspecified on exit.
* (The output value of H when INFO.GT.0 is given under the
* description of INFO below.)
*
* This subroutine may explicitly set H(i,j) = 0 for i.GT.j and
* j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N.
*
* LDH (input) INTEGER
* The leading dimension of the array H. LDH .GE. max(1,N).
*
* WR (output) DOUBLE PRECISION array, dimension (IHI)
* WI (output) DOUBLE PRECISION array, dimension (IHI)
* The real and imaginary parts, respectively, of the computed
* eigenvalues of H(ILO:IHI,ILO:IHI) are stored WR(ILO:IHI)
* and WI(ILO:IHI). If two eigenvalues are computed as a
* complex conjugate pair, they are stored in consecutive
* elements of WR and WI, say the i-th and (i+1)th, with
* WI(i) .GT. 0 and WI(i+1) .LT. 0. If WANTT is .TRUE., then
* the eigenvalues are stored in the same order as on the
* diagonal of the Schur form returned in H, with
* WR(i) = H(i,i) and, if H(i:i+1,i:i+1) is a 2-by-2 diagonal
* block, WI(i) = sqrt(-H(i+1,i)*H(i,i+1)) and
* WI(i+1) = -WI(i).
*
* ILOZ (input) INTEGER
* IHIZ (input) INTEGER
* Specify the rows of Z to which transformations must be
* applied if WANTZ is .TRUE..
* 1 .LE. ILOZ .LE. ILO; IHI .LE. IHIZ .LE. N.
*
* Z (input/output) DOUBLE PRECISION array, dimension (LDZ,IHI)
* If WANTZ is .FALSE., then Z is not referenced.
* If WANTZ is .TRUE., then Z(ILO:IHI,ILOZ:IHIZ) is
* replaced by Z(ILO:IHI,ILOZ:IHIZ)*U where U is the
* orthogonal Schur factor of H(ILO:IHI,ILO:IHI).
* (The output value of Z when INFO.GT.0 is given under
* the description of INFO below.)
*
* LDZ (input) INTEGER
* The leading dimension of the array Z. if WANTZ is .TRUE.
* then LDZ.GE.MAX(1,IHIZ). Otherwize, LDZ.GE.1.
*
* WORK (workspace/output) DOUBLE PRECISION array, dimension LWORK
* On exit, if LWORK = -1, WORK(1) returns an estimate of
* the optimal value for LWORK.
*
* LWORK (input) INTEGER
* The dimension of the array WORK. LWORK .GE. max(1,N)
* is sufficient, but LWORK typically as large as 6*N may
* be required for optimal performance. A workspace query
* to determine the optimal workspace size is recommended.
*
* If LWORK = -1, then DLAQR0 does a workspace query.
* In this case, DLAQR0 checks the input parameters and
* estimates the optimal workspace size for the given
* values of N, ILO and IHI. The estimate is returned
* in WORK(1). No error message related to LWORK is
* issued by XERBLA. Neither H nor Z are accessed.
*
*
* INFO (output) INTEGER
* = 0: successful exit
* .GT. 0: if INFO = i, DLAQR0 failed to compute all of
* the eigenvalues. Elements 1:ilo-1 and i+1:n of WR
* and WI contain those eigenvalues which have been
* successfully computed. (Failures are rare.)
*
* If INFO .GT. 0 and WANT is .FALSE., then on exit,
* the remaining unconverged eigenvalues are the eigen-
* values of the upper Hessenberg matrix rows and
* columns ILO through INFO of the final, output
* value of H.
*
* If INFO .GT. 0 and WANTT is .TRUE., then on exit
*
* (*) (initial value of H)*U = U*(final value of H)
*
* where U is an orthogonal matrix. The final
* value of H is upper Hessenberg and quasi-triangular
* in rows and columns INFO+1 through IHI.
*
* If INFO .GT. 0 and WANTZ is .TRUE., then on exit
*
* (final value of Z(ILO:IHI,ILOZ:IHIZ)
* = (initial value of Z(ILO:IHI,ILOZ:IHIZ)*U
*
* where U is the orthogonal matrix in (*) (regard-
* less of the value of WANTT.)
*
* If INFO .GT. 0 and WANTZ is .FALSE., then Z is not
* accessed.
*
*
* ================================================================
* Based on contributions by
* Karen Braman and Ralph Byers, Department of Mathematics,
* University of Kansas, USA
*
* ================================================================
*
* References:
* K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
* Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
* Performance, SIAM Journal of Matrix Analysis, volume 23, pages
* 929--947, 2002.
*
* K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
* Algorithm Part II: Aggressive Early Deflation, SIAM Journal
* of Matrix Analysis, volume 23, pages 948--973, 2002.
*
* ================================================================
* .. Parameters ..
*
* ==== Matrices of order NTINY or smaller must be processed by
* . DLAHQR because of insufficient subdiagonal scratch space.
* . (This is a hard limit.) ====
*
* ==== Exceptional deflation windows: try to cure rare
* . slow convergence by increasing the size of the
* . deflation window after KEXNW iterations. =====
*
* ==== Exceptional shifts: try to cure rare slow convergence
* . with ad-hoc exceptional shifts every KEXSH iterations.
* . The constants WILK1 and WILK2 are used to form the
* . exceptional shifts. ====
*
INTEGER NTINY
PARAMETER ( NTINY = 11 )
INTEGER KEXNW, KEXSH
PARAMETER ( KEXNW = 5, KEXSH = 6 )
DOUBLE PRECISION WILK1, WILK2
PARAMETER ( WILK1 = 0.75d0, WILK2 = -0.4375d0 )
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0d0, ONE = 1.0d0 )
* ..
* .. Local Scalars ..
DOUBLE PRECISION AA, BB, CC, CS, DD, SN, SS, SWAP
INTEGER I, INF, IT, ITMAX, K, KACC22, KBOT, KDU, KS,
$ KT, KTOP, KU, KV, KWH, KWTOP, KWV, LD, LS,
$ LWKOPT, NDFL, NH, NHO, NIBBLE, NMIN, NS, NSMAX,
$ NSR, NVE, NW, NWMAX, NWR
LOGICAL NWINC, SORTED
CHARACTER JBCMPZ*2
* ..
* .. External Functions ..
INTEGER ILAENV
EXTERNAL ILAENV
* ..
* .. Local Arrays ..
DOUBLE PRECISION ZDUM( 1, 1 )
* ..
* .. External Subroutines ..
EXTERNAL DLACPY, DLAHQR, DLANV2, DLAQR3, DLAQR4, DLAQR5
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, INT, MAX, MIN, MOD
* ..
* .. Executable Statements ..
INFO = 0
*
* ==== Quick return for N = 0: nothing to do. ====
*
IF( N.EQ.0 ) THEN
WORK( 1 ) = ONE
RETURN
END IF
*
* ==== Set up job flags for ILAENV. ====
*
IF( WANTT ) THEN
JBCMPZ( 1: 1 ) = 'S'
ELSE
JBCMPZ( 1: 1 ) = 'E'
END IF
IF( WANTZ ) THEN
JBCMPZ( 2: 2 ) = 'V'
ELSE
JBCMPZ( 2: 2 ) = 'N'
END IF
*
* ==== Tiny matrices must use DLAHQR. ====
*
IF( N.LE.NTINY ) THEN
*
* ==== Estimate optimal workspace. ====
*
LWKOPT = 1
IF( LWORK.NE.-1 )
$ CALL DLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI,
$ ILOZ, IHIZ, Z, LDZ, INFO )
ELSE
*
* ==== Use small bulge multi-shift QR with aggressive early
* . deflation on larger-than-tiny matrices. ====
*
* ==== Hope for the best. ====
*
INFO = 0
*
* ==== NWR = recommended deflation window size. At this
* . point, N .GT. NTINY = 11, so there is enough
* . subdiagonal workspace for NWR.GE.2 as required.
* . (In fact, there is enough subdiagonal space for
* . NWR.GE.3.) ====
*
NWR = ILAENV( 13, 'DLAQR0', JBCMPZ, N, ILO, IHI, LWORK )
NWR = MAX( 2, NWR )
NWR = MIN( IHI-ILO+1, ( N-1 ) / 3, NWR )
NW = NWR
*
* ==== NSR = recommended number of simultaneous shifts.
* . At this point N .GT. NTINY = 11, so there is at
* . enough subdiagonal workspace for NSR to be even
* . and greater than or equal to two as required. ====
*
NSR = ILAENV( 15, 'DLAQR0', JBCMPZ, N, ILO, IHI, LWORK )
NSR = MIN( NSR, ( N+6 ) / 9, IHI-ILO )
NSR = MAX( 2, NSR-MOD( NSR, 2 ) )
*
* ==== Estimate optimal workspace ====
*
* ==== Workspace query call to DLAQR3 ====
*
CALL DLAQR3( WANTT, WANTZ, N, ILO, IHI, NWR+1, H, LDH, ILOZ,
$ IHIZ, Z, LDZ, LS, LD, WR, WI, H, LDH, N, H, LDH,
$ N, H, LDH, WORK, -1 )
*
* ==== Optimal workspace = MAX(DLAQR5, DLAQR3) ====
*
LWKOPT = MAX( 3*NSR / 2, INT( WORK( 1 ) ) )
*
* ==== Quick return in case of workspace query. ====
*
IF( LWORK.EQ.-1 ) THEN
WORK( 1 ) = DBLE( LWKOPT )
RETURN
END IF
*
* ==== DLAHQR/DLAQR0 crossover point ====
*
NMIN = ILAENV( 12, 'DLAQR0', JBCMPZ, N, ILO, IHI, LWORK )
NMIN = MAX( NTINY, NMIN )
*
* ==== Nibble crossover point ====
*
NIBBLE = ILAENV( 14, 'DLAQR0', JBCMPZ, N, ILO, IHI, LWORK )
NIBBLE = MAX( 0, NIBBLE )
*
* ==== Accumulate reflections during ttswp? Use block
* . 2-by-2 structure during matrix-matrix multiply? ====
*
KACC22 = ILAENV( 16, 'DLAQR0', JBCMPZ, N, ILO, IHI, LWORK )
KACC22 = MAX( 0, KACC22 )
KACC22 = MIN( 2, KACC22 )
*
* ==== NWMAX = the largest possible deflation window for
* . which there is sufficient workspace. ====
*
NWMAX = MIN( ( N-1 ) / 3, LWORK / 2 )
*
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -