📄 cgesdd.f
字号:
* Bidiagonalize L in WORK(IL)
* (CWorkspace: need M*M+3*M, prefer M*M+2*M+2*M*NB)
* (RWorkspace: need M)
*
CALL CGEBRD( M, M, WORK( IL ), LDWRKL, S, RWORK( IE ),
$ WORK( ITAUQ ), WORK( ITAUP ), WORK( NWORK ),
$ LWORK-NWORK+1, IERR )
*
* Perform bidiagonal SVD, computing left singular vectors
* of bidiagonal matrix in RWORK(IRU) and computing right
* singular vectors of bidiagonal matrix in RWORK(IRVT)
* (CWorkspace: need 0)
* (RWorkspace: need BDSPAC)
*
IRU = IE + M
IRVT = IRU + M*M
NRWORK = IRVT + M*M
CALL SBDSDC( 'U', 'I', M, S, RWORK( IE ), RWORK( IRU ),
$ M, RWORK( IRVT ), M, DUM, IDUM,
$ RWORK( NRWORK ), IWORK, INFO )
*
* Copy real matrix RWORK(IRU) to complex matrix WORK(IU)
* Overwrite WORK(IU) by the left singular vectors of L
* (CWorkspace: need N*N+3*N, prefer M*N+2*N+N*NB)
* (RWorkspace: 0)
*
CALL CLACP2( 'F', M, M, RWORK( IRU ), M, U, LDU )
CALL CUNMBR( 'Q', 'L', 'N', M, M, M, WORK( IL ), LDWRKL,
$ WORK( ITAUQ ), U, LDU, WORK( NWORK ),
$ LWORK-NWORK+1, IERR )
*
* Copy real matrix RWORK(IRVT) to complex matrix WORK(IVT)
* Overwrite WORK(IVT) by the right singular vectors of L
* (CWorkspace: need N*N+3*N, prefer M*N+2*N+N*NB)
* (RWorkspace: 0)
*
CALL CLACP2( 'F', M, M, RWORK( IRVT ), M, WORK( IVT ),
$ LDWKVT )
CALL CUNMBR( 'P', 'R', 'C', M, M, M, WORK( IL ), LDWRKL,
$ WORK( ITAUP ), WORK( IVT ), LDWKVT,
$ WORK( NWORK ), LWORK-NWORK+1, IERR )
*
* Multiply right singular vectors of L in WORK(IL) by Q
* in A, storing result in WORK(IL) and copying to A
* (CWorkspace: need 2*M*M, prefer M*M+M*N))
* (RWorkspace: 0)
*
DO 40 I = 1, N, CHUNK
BLK = MIN( N-I+1, CHUNK )
CALL CGEMM( 'N', 'N', M, BLK, M, CONE, WORK( IVT ), M,
$ A( 1, I ), LDA, CZERO, WORK( IL ),
$ LDWRKL )
CALL CLACPY( 'F', M, BLK, WORK( IL ), LDWRKL,
$ A( 1, I ), LDA )
40 CONTINUE
*
ELSE IF( WNTQS ) THEN
*
* Path 3t (N much larger than M, JOBZ='S')
* M right singular vectors to be computed in VT and
* M left singular vectors to be computed in U
*
IL = 1
*
* WORK(IL) is M by M
*
LDWRKL = M
ITAU = IL + LDWRKL*M
NWORK = ITAU + M
*
* Compute A=L*Q
* (CWorkspace: need 2*M, prefer M+M*NB)
* (RWorkspace: 0)
*
CALL CGELQF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
$ LWORK-NWORK+1, IERR )
*
* Copy L to WORK(IL), zeroing out above it
*
CALL CLACPY( 'L', M, M, A, LDA, WORK( IL ), LDWRKL )
CALL CLASET( 'U', M-1, M-1, CZERO, CZERO,
$ WORK( IL+LDWRKL ), LDWRKL )
*
* Generate Q in A
* (CWorkspace: need M*M+2*M, prefer M*M+M+M*NB)
* (RWorkspace: 0)
*
CALL CUNGLQ( M, N, M, A, LDA, WORK( ITAU ),
$ WORK( NWORK ), LWORK-NWORK+1, IERR )
IE = 1
ITAUQ = ITAU
ITAUP = ITAUQ + M
NWORK = ITAUP + M
*
* Bidiagonalize L in WORK(IL)
* (CWorkspace: need M*M+3*M, prefer M*M+2*M+2*M*NB)
* (RWorkspace: need M)
*
CALL CGEBRD( M, M, WORK( IL ), LDWRKL, S, RWORK( IE ),
$ WORK( ITAUQ ), WORK( ITAUP ), WORK( NWORK ),
$ LWORK-NWORK+1, IERR )
*
* Perform bidiagonal SVD, computing left singular vectors
* of bidiagonal matrix in RWORK(IRU) and computing right
* singular vectors of bidiagonal matrix in RWORK(IRVT)
* (CWorkspace: need 0)
* (RWorkspace: need BDSPAC)
*
IRU = IE + M
IRVT = IRU + M*M
NRWORK = IRVT + M*M
CALL SBDSDC( 'U', 'I', M, S, RWORK( IE ), RWORK( IRU ),
$ M, RWORK( IRVT ), M, DUM, IDUM,
$ RWORK( NRWORK ), IWORK, INFO )
*
* Copy real matrix RWORK(IRU) to complex matrix U
* Overwrite U by left singular vectors of L
* (CWorkspace: need M*M+3*M, prefer M*M+2*M+M*NB)
* (RWorkspace: 0)
*
CALL CLACP2( 'F', M, M, RWORK( IRU ), M, U, LDU )
CALL CUNMBR( 'Q', 'L', 'N', M, M, M, WORK( IL ), LDWRKL,
$ WORK( ITAUQ ), U, LDU, WORK( NWORK ),
$ LWORK-NWORK+1, IERR )
*
* Copy real matrix RWORK(IRVT) to complex matrix VT
* Overwrite VT by left singular vectors of L
* (CWorkspace: need M*M+3*M, prefer M*M+2*M+M*NB)
* (RWorkspace: 0)
*
CALL CLACP2( 'F', M, M, RWORK( IRVT ), M, VT, LDVT )
CALL CUNMBR( 'P', 'R', 'C', M, M, M, WORK( IL ), LDWRKL,
$ WORK( ITAUP ), VT, LDVT, WORK( NWORK ),
$ LWORK-NWORK+1, IERR )
*
* Copy VT to WORK(IL), multiply right singular vectors of L
* in WORK(IL) by Q in A, storing result in VT
* (CWorkspace: need M*M)
* (RWorkspace: 0)
*
CALL CLACPY( 'F', M, M, VT, LDVT, WORK( IL ), LDWRKL )
CALL CGEMM( 'N', 'N', M, N, M, CONE, WORK( IL ), LDWRKL,
$ A, LDA, CZERO, VT, LDVT )
*
ELSE IF( WNTQA ) THEN
*
* Path 9t (N much larger than M, JOBZ='A')
* N right singular vectors to be computed in VT and
* M left singular vectors to be computed in U
*
IVT = 1
*
* WORK(IVT) is M by M
*
LDWKVT = M
ITAU = IVT + LDWKVT*M
NWORK = ITAU + M
*
* Compute A=L*Q, copying result to VT
* (CWorkspace: need 2*M, prefer M+M*NB)
* (RWorkspace: 0)
*
CALL CGELQF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
$ LWORK-NWORK+1, IERR )
CALL CLACPY( 'U', M, N, A, LDA, VT, LDVT )
*
* Generate Q in VT
* (CWorkspace: need M+N, prefer M+N*NB)
* (RWorkspace: 0)
*
CALL CUNGLQ( N, N, M, VT, LDVT, WORK( ITAU ),
$ WORK( NWORK ), LWORK-NWORK+1, IERR )
*
* Produce L in A, zeroing out above it
*
CALL CLASET( 'U', M-1, M-1, CZERO, CZERO, A( 1, 2 ),
$ LDA )
IE = 1
ITAUQ = ITAU
ITAUP = ITAUQ + M
NWORK = ITAUP + M
*
* Bidiagonalize L in A
* (CWorkspace: need M*M+3*M, prefer M*M+2*M+2*M*NB)
* (RWorkspace: need M)
*
CALL CGEBRD( M, M, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
$ WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
$ IERR )
*
* Perform bidiagonal SVD, computing left singular vectors
* of bidiagonal matrix in RWORK(IRU) and computing right
* singular vectors of bidiagonal matrix in RWORK(IRVT)
* (CWorkspace: need 0)
* (RWorkspace: need BDSPAC)
*
IRU = IE + M
IRVT = IRU + M*M
NRWORK = IRVT + M*M
CALL SBDSDC( 'U', 'I', M, S, RWORK( IE ), RWORK( IRU ),
$ M, RWORK( IRVT ), M, DUM, IDUM,
$ RWORK( NRWORK ), IWORK, INFO )
*
* Copy real matrix RWORK(IRU) to complex matrix U
* Overwrite U by left singular vectors of L
* (CWorkspace: need 3*M, prefer 2*M+M*NB)
* (RWorkspace: 0)
*
CALL CLACP2( 'F', M, M, RWORK( IRU ), M, U, LDU )
CALL CUNMBR( 'Q', 'L', 'N', M, M, M, A, LDA,
$ WORK( ITAUQ ), U, LDU, WORK( NWORK ),
$ LWORK-NWORK+1, IERR )
*
* Copy real matrix RWORK(IRVT) to complex matrix WORK(IVT)
* Overwrite WORK(IVT) by right singular vectors of L
* (CWorkspace: need M*M+3*M, prefer M*M+2*M+M*NB)
* (RWorkspace: 0)
*
CALL CLACP2( 'F', M, M, RWORK( IRVT ), M, WORK( IVT ),
$ LDWKVT )
CALL CUNMBR( 'P', 'R', 'C', M, M, M, A, LDA,
$ WORK( ITAUP ), WORK( IVT ), LDWKVT,
$ WORK( NWORK ), LWORK-NWORK+1, IERR )
*
* Multiply right singular vectors of L in WORK(IVT) by
* Q in VT, storing result in A
* (CWorkspace: need M*M)
* (RWorkspace: 0)
*
CALL CGEMM( 'N', 'N', M, N, M, CONE, WORK( IVT ),
$ LDWKVT, VT, LDVT, CZERO, A, LDA )
*
* Copy right singular vectors of A from A to VT
*
CALL CLACPY( 'F', M, N, A, LDA, VT, LDVT )
*
END IF
*
ELSE IF( N.GE.MNTHR2 ) THEN
*
* MNTHR2 <= N < MNTHR1
*
* Path 5t (N much larger than M, but not as much as MNTHR1)
* Reduce to bidiagonal form without QR decomposition, use
* CUNGBR and matrix multiplication to compute singular vectors
*
*
IE = 1
NRWORK = IE + M
ITAUQ = 1
ITAUP = ITAUQ + M
NWORK = ITAUP + M
*
* Bidiagonalize A
* (CWorkspace: need 2*M+N, prefer 2*M+(M+N)*NB)
* (RWorkspace: M)
*
CALL CGEBRD( M, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
$ WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
$ IERR )
*
IF( WNTQN ) THEN
*
* Compute singular values only
* (Cworkspace: 0)
* (Rworkspace: need BDSPAN)
*
CALL SBDSDC( 'L', 'N', M, S, RWORK( IE ), DUM, 1, DUM, 1,
$ DUM, IDUM, RWORK( NRWORK ), IWORK, INFO )
ELSE IF( WNTQO ) THEN
IRVT = NRWORK
IRU = IRVT + M*M
NRWORK = IRU + M*M
IVT = NWORK
*
* Copy A to U, generate Q
* (Cworkspace: need 2*M, prefer M+M*NB)
* (Rworkspace: 0)
*
CALL CLACPY( 'L', M, M, A, LDA, U, LDU )
CALL CUNGBR( 'Q', M, M, N, U, LDU, WORK( ITAUQ ),
$ WORK( NWORK ), LWORK-NWORK+1, IERR )
*
* Generate P**H in A
* (Cworkspace: need 2*M, prefer M+M*NB)
* (Rworkspace: 0)
*
CALL CUNGBR( 'P', M, N, M, A, LDA, WORK( ITAUP ),
$ WORK( NWORK ), LWORK-NWORK+1, IERR )
*
LDWKVT = M
IF( LWORK.GE.M*N+3*M ) THEN
*
* WORK( IVT ) is M by N
*
NWORK = IVT + LDWKVT*N
CHUNK = N
ELSE
*
* WORK( IVT ) is M by CHUNK
*
CHUNK = ( LWORK-3*M ) / M
NWORK = IVT + LDWKVT*CHUNK
END IF
*
* Perform bidiagonal SVD, computing left singular vectors
* of bidiagonal matrix in RWORK(IRU) and computing right
* singular vectors of bidiagonal matrix in RWORK(IRVT)
* (CWorkspace: need 0)
* (RWorkspace: need BDSPAC)
*
CALL SBDSDC( 'L', 'I', M, S, RWORK( IE ), RWORK( IRU ),
$ M, RWORK( IRVT ), M, DUM, IDUM,
$ RWORK( NRWORK ), IWORK, INFO )
*
* Multiply Q in U by real matrix RWORK(IRVT)
* storing the result in WORK(IVT), copying to U
* (Cworkspace: need 0)
* (Rworkspace: need 2*M*M)
*
CALL CLACRM( M, M, U, LDU, RWORK( IRU ), M, WORK( IVT ),
$ LDWKVT, RWORK( NRWORK ) )
CALL CLACPY( 'F', M, M, WORK( IVT ), LDWKVT, U, LDU )
*
* Multiply RWORK(IRVT) by P**H in A, storing the
* result in WORK(IVT), copying to A
* (CWorkspace: need M*M, prefer M
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -