📄 zgesdd.f
字号:
SUBROUTINE ZGESDD( JOBZ, M, N, A, LDA, S, U, LDU, VT, LDVT, WORK,
$ LWORK, RWORK, IWORK, INFO )
*
* -- LAPACK driver routine (version 3.1) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
* 8-15-00: Improve consistency of WS calculations (eca)
*
* .. Scalar Arguments ..
CHARACTER JOBZ
INTEGER INFO, LDA, LDU, LDVT, LWORK, M, N
* ..
* .. Array Arguments ..
INTEGER IWORK( * )
DOUBLE PRECISION RWORK( * ), S( * )
COMPLEX*16 A( LDA, * ), U( LDU, * ), VT( LDVT, * ),
$ WORK( * )
* ..
*
* Purpose
* =======
*
* ZGESDD computes the singular value decomposition (SVD) of a complex
* M-by-N matrix A, optionally computing the left and/or right singular
* vectors, by using divide-and-conquer method. The SVD is written
*
* A = U * SIGMA * conjugate-transpose(V)
*
* where SIGMA is an M-by-N matrix which is zero except for its
* min(m,n) diagonal elements, U is an M-by-M unitary matrix, and
* V is an N-by-N unitary matrix. The diagonal elements of SIGMA
* are the singular values of A; they are real and non-negative, and
* are returned in descending order. The first min(m,n) columns of
* U and V are the left and right singular vectors of A.
*
* Note that the routine returns VT = V**H, not V.
*
* The divide and conquer algorithm makes very mild assumptions about
* floating point arithmetic. It will work on machines with a guard
* digit in add/subtract, or on those binary machines without guard
* digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
* Cray-2. It could conceivably fail on hexadecimal or decimal machines
* without guard digits, but we know of none.
*
* Arguments
* =========
*
* JOBZ (input) CHARACTER*1
* Specifies options for computing all or part of the matrix U:
* = 'A': all M columns of U and all N rows of V**H are
* returned in the arrays U and VT;
* = 'S': the first min(M,N) columns of U and the first
* min(M,N) rows of V**H are returned in the arrays U
* and VT;
* = 'O': If M >= N, the first N columns of U are overwritten
* in the array A and all rows of V**H are returned in
* the array VT;
* otherwise, all columns of U are returned in the
* array U and the first M rows of V**H are overwritten
* in the array A;
* = 'N': no columns of U or rows of V**H are computed.
*
* M (input) INTEGER
* The number of rows of the input matrix A. M >= 0.
*
* N (input) INTEGER
* The number of columns of the input matrix A. N >= 0.
*
* A (input/output) COMPLEX*16 array, dimension (LDA,N)
* On entry, the M-by-N matrix A.
* On exit,
* if JOBZ = 'O', A is overwritten with the first N columns
* of U (the left singular vectors, stored
* columnwise) if M >= N;
* A is overwritten with the first M rows
* of V**H (the right singular vectors, stored
* rowwise) otherwise.
* if JOBZ .ne. 'O', the contents of A are destroyed.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,M).
*
* S (output) DOUBLE PRECISION array, dimension (min(M,N))
* The singular values of A, sorted so that S(i) >= S(i+1).
*
* U (output) COMPLEX*16 array, dimension (LDU,UCOL)
* UCOL = M if JOBZ = 'A' or JOBZ = 'O' and M < N;
* UCOL = min(M,N) if JOBZ = 'S'.
* If JOBZ = 'A' or JOBZ = 'O' and M < N, U contains the M-by-M
* unitary matrix U;
* if JOBZ = 'S', U contains the first min(M,N) columns of U
* (the left singular vectors, stored columnwise);
* if JOBZ = 'O' and M >= N, or JOBZ = 'N', U is not referenced.
*
* LDU (input) INTEGER
* The leading dimension of the array U. LDU >= 1; if
* JOBZ = 'S' or 'A' or JOBZ = 'O' and M < N, LDU >= M.
*
* VT (output) COMPLEX*16 array, dimension (LDVT,N)
* If JOBZ = 'A' or JOBZ = 'O' and M >= N, VT contains the
* N-by-N unitary matrix V**H;
* if JOBZ = 'S', VT contains the first min(M,N) rows of
* V**H (the right singular vectors, stored rowwise);
* if JOBZ = 'O' and M < N, or JOBZ = 'N', VT is not referenced.
*
* LDVT (input) INTEGER
* The leading dimension of the array VT. LDVT >= 1; if
* JOBZ = 'A' or JOBZ = 'O' and M >= N, LDVT >= N;
* if JOBZ = 'S', LDVT >= min(M,N).
*
* WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
* LWORK (input) INTEGER
* The dimension of the array WORK. LWORK >= 1.
* if JOBZ = 'N', LWORK >= 2*min(M,N)+max(M,N).
* if JOBZ = 'O',
* LWORK >= 2*min(M,N)*min(M,N)+2*min(M,N)+max(M,N).
* if JOBZ = 'S' or 'A',
* LWORK >= min(M,N)*min(M,N)+2*min(M,N)+max(M,N).
* For good performance, LWORK should generally be larger.
*
* If LWORK = -1, a workspace query is assumed. The optimal
* size for the WORK array is calculated and stored in WORK(1),
* and no other work except argument checking is performed.
*
* RWORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LRWORK))
* If JOBZ = 'N', LRWORK >= 5*min(M,N).
* Otherwise, LRWORK >= 5*min(M,N)*min(M,N) + 7*min(M,N)
*
* IWORK (workspace) INTEGER array, dimension (8*min(M,N))
*
* INFO (output) INTEGER
* = 0: successful exit.
* < 0: if INFO = -i, the i-th argument had an illegal value.
* > 0: The updating process of DBDSDC did not converge.
*
* Further Details
* ===============
*
* Based on contributions by
* Ming Gu and Huan Ren, Computer Science Division, University of
* California at Berkeley, USA
*
* =====================================================================
*
* .. Parameters ..
INTEGER LQUERV
PARAMETER ( LQUERV = -1 )
COMPLEX*16 CZERO, CONE
PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ),
$ CONE = ( 1.0D+0, 0.0D+0 ) )
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
* ..
* .. Local Scalars ..
LOGICAL WNTQA, WNTQAS, WNTQN, WNTQO, WNTQS
INTEGER BLK, CHUNK, I, IE, IERR, IL, IR, IRU, IRVT,
$ ISCL, ITAU, ITAUP, ITAUQ, IU, IVT, LDWKVT,
$ LDWRKL, LDWRKR, LDWRKU, MAXWRK, MINMN, MINWRK,
$ MNTHR1, MNTHR2, NRWORK, NWORK, WRKBL
DOUBLE PRECISION ANRM, BIGNUM, EPS, SMLNUM
* ..
* .. Local Arrays ..
INTEGER IDUM( 1 )
DOUBLE PRECISION DUM( 1 )
* ..
* .. External Subroutines ..
EXTERNAL DBDSDC, DLASCL, XERBLA, ZGEBRD, ZGELQF, ZGEMM,
$ ZGEQRF, ZLACP2, ZLACPY, ZLACRM, ZLARCM, ZLASCL,
$ ZLASET, ZUNGBR, ZUNGLQ, ZUNGQR, ZUNMBR
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ILAENV
DOUBLE PRECISION DLAMCH, ZLANGE
EXTERNAL LSAME, ILAENV, DLAMCH, ZLANGE
* ..
* .. Intrinsic Functions ..
INTRINSIC INT, MAX, MIN, SQRT
* ..
* .. Executable Statements ..
*
* Test the input arguments
*
INFO = 0
MINMN = MIN( M, N )
MNTHR1 = INT( MINMN*17.0D0 / 9.0D0 )
MNTHR2 = INT( MINMN*5.0D0 / 3.0D0 )
WNTQA = LSAME( JOBZ, 'A' )
WNTQS = LSAME( JOBZ, 'S' )
WNTQAS = WNTQA .OR. WNTQS
WNTQO = LSAME( JOBZ, 'O' )
WNTQN = LSAME( JOBZ, 'N' )
MINWRK = 1
MAXWRK = 1
*
IF( .NOT.( WNTQA .OR. WNTQS .OR. WNTQO .OR. WNTQN ) ) THEN
INFO = -1
ELSE IF( M.LT.0 ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
INFO = -5
ELSE IF( LDU.LT.1 .OR. ( WNTQAS .AND. LDU.LT.M ) .OR.
$ ( WNTQO .AND. M.LT.N .AND. LDU.LT.M ) ) THEN
INFO = -8
ELSE IF( LDVT.LT.1 .OR. ( WNTQA .AND. LDVT.LT.N ) .OR.
$ ( WNTQS .AND. LDVT.LT.MINMN ) .OR.
$ ( WNTQO .AND. M.GE.N .AND. LDVT.LT.N ) ) THEN
INFO = -10
END IF
*
* Compute workspace
* (Note: Comments in the code beginning "Workspace:" describe the
* minimal amount of workspace needed at that point in the code,
* as well as the preferred amount for good performance.
* CWorkspace refers to complex workspace, and RWorkspace to
* real workspace. NB refers to the optimal block size for the
* immediately following subroutine, as returned by ILAENV.)
*
IF( INFO.EQ.0 .AND. M.GT.0 .AND. N.GT.0 ) THEN
IF( M.GE.N ) THEN
*
* There is no complex work space needed for bidiagonal SVD
* The real work space needed for bidiagonal SVD is BDSPAC
* for computing singular values and singular vectors; BDSPAN
* for computing singular values only.
* BDSPAC = 5*N*N + 7*N
* BDSPAN = MAX(7*N+4, 3*N+2+SMLSIZ*(SMLSIZ+8))
*
IF( M.GE.MNTHR1 ) THEN
IF( WNTQN ) THEN
*
* Path 1 (M much larger than N, JOBZ='N')
*
MAXWRK = N + N*ILAENV( 1, 'ZGEQRF', ' ', M, N, -1,
$ -1 )
MAXWRK = MAX( MAXWRK, 2*N+2*N*
$ ILAENV( 1, 'ZGEBRD', ' ', N, N, -1, -1 ) )
MINWRK = 3*N
ELSE IF( WNTQO ) THEN
*
* Path 2 (M much larger than N, JOBZ='O')
*
WRKBL = N + N*ILAENV( 1, 'ZGEQRF', ' ', M, N, -1, -1 )
WRKBL = MAX( WRKBL, N+N*ILAENV( 1, 'ZUNGQR', ' ', M,
$ N, N, -1 ) )
WRKBL = MAX( WRKBL, 2*N+2*N*
$ ILAENV( 1, 'ZGEBRD', ' ', N, N, -1, -1 ) )
WRKBL = MAX( WRKBL, 2*N+N*
$ ILAENV( 1, 'ZUNMBR', 'QLN', N, N, N, -1 ) )
WRKBL = MAX( WRKBL, 2*N+N*
$ ILAENV( 1, 'ZUNMBR', 'PRC', N, N, N, -1 ) )
MAXWRK = M*N + N*N + WRKBL
MINWRK = 2*N*N + 3*N
ELSE IF( WNTQS ) THEN
*
* Path 3 (M much larger than N, JOBZ='S')
*
WRKBL = N + N*ILAENV( 1, 'ZGEQRF', ' ', M, N, -1, -1 )
WRKBL = MAX( WRKBL, N+N*ILAENV( 1, 'ZUNGQR', ' ', M,
$ N, N, -1 ) )
WRKBL = MAX( WRKBL, 2*N+2*N*
$ ILAENV( 1, 'ZGEBRD', ' ', N, N, -1, -1 ) )
WRKBL = MAX( WRKBL, 2*N+N*
$ ILAENV( 1, 'ZUNMBR', 'QLN', N, N, N, -1 ) )
WRKBL = MAX( WRKBL, 2*N+N*
$ ILAENV( 1, 'ZUNMBR', 'PRC', N, N, N, -1 ) )
MAXWRK = N*N + WRKBL
MINWRK = N*N + 3*N
ELSE IF( WNTQA ) THEN
*
* Path 4 (M much larger than N, JOBZ='A')
*
WRKBL = N + N*ILAENV( 1, 'ZGEQRF', ' ', M, N, -1, -1 )
WRKBL = MAX( WRKBL, N+M*ILAENV( 1, 'ZUNGQR', ' ', M,
$ M, N, -1 ) )
WRKBL = MAX( WRKBL, 2*N+2*N*
$ ILAENV( 1, 'ZGEBRD', ' ', N, N, -1, -1 ) )
WRKBL = MAX( WRKBL, 2*N+N*
$ ILAENV( 1, 'ZUNMBR', 'QLN', N, N, N, -1 ) )
WRKBL = MAX( WRKBL, 2*N+N*
$ ILAENV( 1, 'ZUNMBR', 'PRC', N, N, N, -1 ) )
MAXWRK = N*N + WRKBL
MINWRK = N*N + 2*N + M
END IF
ELSE IF( M.GE.MNTHR2 ) THEN
*
* Path 5 (M much larger than N, but not as much as MNTHR1)
*
MAXWRK = 2*N + ( M+N )*ILAENV( 1, 'ZGEBRD', ' ', M, N,
$ -1, -1 )
MINWRK = 2*N + M
IF( WNTQO ) THEN
MAXWRK = MAX( MAXWRK, 2*N+N*
$ ILAENV( 1, 'ZUNGBR', 'P', N, N, N, -1 ) )
MAXWRK = MAX( MAXWRK, 2*N+N*
$ ILAENV( 1, 'ZUNGBR', 'Q', M, N, N, -1 ) )
MAXWRK = MAXWRK + M*N
MINWRK = MINWRK + N*N
ELSE IF( WNTQS ) THEN
MAXWRK = MAX( MAXWRK, 2*N+N*
$ ILAENV( 1, 'ZUNGBR', 'P', N, N, N, -1 ) )
MAXWRK = MAX( MAXWRK, 2*N+N*
$ ILAENV( 1, 'ZUNGBR', 'Q', M, N, N, -1 ) )
ELSE IF( WNTQA ) THEN
MAXWRK = MAX( MAXWRK, 2*N+N*
$ ILAENV( 1, 'ZUNGBR', 'P', N, N, N, -1 ) )
MAXWRK = MAX( MAXWRK, 2*N+M*
$ ILAENV( 1, 'ZUNGBR', 'Q', M, M, N, -1 ) )
END IF
ELSE
*
* Path 6 (M at least N, but not much larger)
*
MAXWRK = 2*N + ( M+N )*ILAENV( 1, 'ZGEBRD', ' ', M, N,
$ -1, -1 )
MINWRK = 2*N + M
IF( WNTQO ) THEN
MAXWRK = MAX( MAXWRK, 2*N+N*
$ ILAENV( 1, 'ZUNMBR', 'PRC', N, N, N, -1 ) )
MAXWRK = MAX( MAXWRK, 2*N+N*
$ ILAENV( 1, 'ZUNMBR', 'QLN', M, N, N, -1 ) )
MAXWRK = MAXWRK + M*N
MINWRK = MINWRK + N*N
ELSE IF( WNTQS ) THEN
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -