⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dlatrs.f

📁 famous linear algebra library (LAPACK) ports to windows
💻 F
📖 第 1 页 / 共 2 页
字号:
            JLAST = N
            JINC = 1
         ELSE
            JFIRST = N
            JLAST = 1
            JINC = -1
         END IF
*
         IF( TSCAL.NE.ONE ) THEN
            GROW = ZERO
            GO TO 80
         END IF
*
         IF( NOUNIT ) THEN
*
*           A is non-unit triangular.
*
*           Compute GROW = 1/G(j) and XBND = 1/M(j).
*           Initially, M(0) = max{x(i), i=1,...,n}.
*
            GROW = ONE / MAX( XBND, SMLNUM )
            XBND = GROW
            DO 60 J = JFIRST, JLAST, JINC
*
*              Exit the loop if the growth factor is too small.
*
               IF( GROW.LE.SMLNUM )
     $            GO TO 80
*
*              G(j) = max( G(j-1), M(j-1)*( 1 + CNORM(j) ) )
*
               XJ = ONE + CNORM( J )
               GROW = MIN( GROW, XBND / XJ )
*
*              M(j) = M(j-1)*( 1 + CNORM(j) ) / abs(A(j,j))
*
               TJJ = ABS( A( J, J ) )
               IF( XJ.GT.TJJ )
     $            XBND = XBND*( TJJ / XJ )
   60       CONTINUE
            GROW = MIN( GROW, XBND )
         ELSE
*
*           A is unit triangular.
*
*           Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
*
            GROW = MIN( ONE, ONE / MAX( XBND, SMLNUM ) )
            DO 70 J = JFIRST, JLAST, JINC
*
*              Exit the loop if the growth factor is too small.
*
               IF( GROW.LE.SMLNUM )
     $            GO TO 80
*
*              G(j) = ( 1 + CNORM(j) )*G(j-1)
*
               XJ = ONE + CNORM( J )
               GROW = GROW / XJ
   70       CONTINUE
         END IF
   80    CONTINUE
      END IF
*
      IF( ( GROW*TSCAL ).GT.SMLNUM ) THEN
*
*        Use the Level 2 BLAS solve if the reciprocal of the bound on
*        elements of X is not too small.
*
         CALL DTRSV( UPLO, TRANS, DIAG, N, A, LDA, X, 1 )
      ELSE
*
*        Use a Level 1 BLAS solve, scaling intermediate results.
*
         IF( XMAX.GT.BIGNUM ) THEN
*
*           Scale X so that its components are less than or equal to
*           BIGNUM in absolute value.
*
            SCALE = BIGNUM / XMAX
            CALL DSCAL( N, SCALE, X, 1 )
            XMAX = BIGNUM
         END IF
*
         IF( NOTRAN ) THEN
*
*           Solve A * x = b
*
            DO 110 J = JFIRST, JLAST, JINC
*
*              Compute x(j) = b(j) / A(j,j), scaling x if necessary.
*
               XJ = ABS( X( J ) )
               IF( NOUNIT ) THEN
                  TJJS = A( J, J )*TSCAL
               ELSE
                  TJJS = TSCAL
                  IF( TSCAL.EQ.ONE )
     $               GO TO 100
               END IF
               TJJ = ABS( TJJS )
               IF( TJJ.GT.SMLNUM ) THEN
*
*                    abs(A(j,j)) > SMLNUM:
*
                  IF( TJJ.LT.ONE ) THEN
                     IF( XJ.GT.TJJ*BIGNUM ) THEN
*
*                          Scale x by 1/b(j).
*
                        REC = ONE / XJ
                        CALL DSCAL( N, REC, X, 1 )
                        SCALE = SCALE*REC
                        XMAX = XMAX*REC
                     END IF
                  END IF
                  X( J ) = X( J ) / TJJS
                  XJ = ABS( X( J ) )
               ELSE IF( TJJ.GT.ZERO ) THEN
*
*                    0 < abs(A(j,j)) <= SMLNUM:
*
                  IF( XJ.GT.TJJ*BIGNUM ) THEN
*
*                       Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM
*                       to avoid overflow when dividing by A(j,j).
*
                     REC = ( TJJ*BIGNUM ) / XJ
                     IF( CNORM( J ).GT.ONE ) THEN
*
*                          Scale by 1/CNORM(j) to avoid overflow when
*                          multiplying x(j) times column j.
*
                        REC = REC / CNORM( J )
                     END IF
                     CALL DSCAL( N, REC, X, 1 )
                     SCALE = SCALE*REC
                     XMAX = XMAX*REC
                  END IF
                  X( J ) = X( J ) / TJJS
                  XJ = ABS( X( J ) )
               ELSE
*
*                    A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and
*                    scale = 0, and compute a solution to A*x = 0.
*
                  DO 90 I = 1, N
                     X( I ) = ZERO
   90             CONTINUE
                  X( J ) = ONE
                  XJ = ONE
                  SCALE = ZERO
                  XMAX = ZERO
               END IF
  100          CONTINUE
*
*              Scale x if necessary to avoid overflow when adding a
*              multiple of column j of A.
*
               IF( XJ.GT.ONE ) THEN
                  REC = ONE / XJ
                  IF( CNORM( J ).GT.( BIGNUM-XMAX )*REC ) THEN
*
*                    Scale x by 1/(2*abs(x(j))).
*
                     REC = REC*HALF
                     CALL DSCAL( N, REC, X, 1 )
                     SCALE = SCALE*REC
                  END IF
               ELSE IF( XJ*CNORM( J ).GT.( BIGNUM-XMAX ) ) THEN
*
*                 Scale x by 1/2.
*
                  CALL DSCAL( N, HALF, X, 1 )
                  SCALE = SCALE*HALF
               END IF
*
               IF( UPPER ) THEN
                  IF( J.GT.1 ) THEN
*
*                    Compute the update
*                       x(1:j-1) := x(1:j-1) - x(j) * A(1:j-1,j)
*
                     CALL DAXPY( J-1, -X( J )*TSCAL, A( 1, J ), 1, X,
     $                           1 )
                     I = IDAMAX( J-1, X, 1 )
                     XMAX = ABS( X( I ) )
                  END IF
               ELSE
                  IF( J.LT.N ) THEN
*
*                    Compute the update
*                       x(j+1:n) := x(j+1:n) - x(j) * A(j+1:n,j)
*
                     CALL DAXPY( N-J, -X( J )*TSCAL, A( J+1, J ), 1,
     $                           X( J+1 ), 1 )
                     I = J + IDAMAX( N-J, X( J+1 ), 1 )
                     XMAX = ABS( X( I ) )
                  END IF
               END IF
  110       CONTINUE
*
         ELSE
*
*           Solve A' * x = b
*
            DO 160 J = JFIRST, JLAST, JINC
*
*              Compute x(j) = b(j) - sum A(k,j)*x(k).
*                                    k<>j
*
               XJ = ABS( X( J ) )
               USCAL = TSCAL
               REC = ONE / MAX( XMAX, ONE )
               IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
*
*                 If x(j) could overflow, scale x by 1/(2*XMAX).
*
                  REC = REC*HALF
                  IF( NOUNIT ) THEN
                     TJJS = A( J, J )*TSCAL
                  ELSE
                     TJJS = TSCAL
                  END IF
                  TJJ = ABS( TJJS )
                  IF( TJJ.GT.ONE ) THEN
*
*                       Divide by A(j,j) when scaling x if A(j,j) > 1.
*
                     REC = MIN( ONE, REC*TJJ )
                     USCAL = USCAL / TJJS
                  END IF
                  IF( REC.LT.ONE ) THEN
                     CALL DSCAL( N, REC, X, 1 )
                     SCALE = SCALE*REC
                     XMAX = XMAX*REC
                  END IF
               END IF
*
               SUMJ = ZERO
               IF( USCAL.EQ.ONE ) THEN
*
*                 If the scaling needed for A in the dot product is 1,
*                 call DDOT to perform the dot product.
*
                  IF( UPPER ) THEN
                     SUMJ = DDOT( J-1, A( 1, J ), 1, X, 1 )
                  ELSE IF( J.LT.N ) THEN
                     SUMJ = DDOT( N-J, A( J+1, J ), 1, X( J+1 ), 1 )
                  END IF
               ELSE
*
*                 Otherwise, use in-line code for the dot product.
*
                  IF( UPPER ) THEN
                     DO 120 I = 1, J - 1
                        SUMJ = SUMJ + ( A( I, J )*USCAL )*X( I )
  120                CONTINUE
                  ELSE IF( J.LT.N ) THEN
                     DO 130 I = J + 1, N
                        SUMJ = SUMJ + ( A( I, J )*USCAL )*X( I )
  130                CONTINUE
                  END IF
               END IF
*
               IF( USCAL.EQ.TSCAL ) THEN
*
*                 Compute x(j) := ( x(j) - sumj ) / A(j,j) if 1/A(j,j)
*                 was not used to scale the dotproduct.
*
                  X( J ) = X( J ) - SUMJ
                  XJ = ABS( X( J ) )
                  IF( NOUNIT ) THEN
                     TJJS = A( J, J )*TSCAL
                  ELSE
                     TJJS = TSCAL
                     IF( TSCAL.EQ.ONE )
     $                  GO TO 150
                  END IF
*
*                    Compute x(j) = x(j) / A(j,j), scaling if necessary.
*
                  TJJ = ABS( TJJS )
                  IF( TJJ.GT.SMLNUM ) THEN
*
*                       abs(A(j,j)) > SMLNUM:
*
                     IF( TJJ.LT.ONE ) THEN
                        IF( XJ.GT.TJJ*BIGNUM ) THEN
*
*                             Scale X by 1/abs(x(j)).
*
                           REC = ONE / XJ
                           CALL DSCAL( N, REC, X, 1 )
                           SCALE = SCALE*REC
                           XMAX = XMAX*REC
                        END IF
                     END IF
                     X( J ) = X( J ) / TJJS
                  ELSE IF( TJJ.GT.ZERO ) THEN
*
*                       0 < abs(A(j,j)) <= SMLNUM:
*
                     IF( XJ.GT.TJJ*BIGNUM ) THEN
*
*                          Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
*
                        REC = ( TJJ*BIGNUM ) / XJ
                        CALL DSCAL( N, REC, X, 1 )
                        SCALE = SCALE*REC
                        XMAX = XMAX*REC
                     END IF
                     X( J ) = X( J ) / TJJS
                  ELSE
*
*                       A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and
*                       scale = 0, and compute a solution to A'*x = 0.
*
                     DO 140 I = 1, N
                        X( I ) = ZERO
  140                CONTINUE
                     X( J ) = ONE
                     SCALE = ZERO
                     XMAX = ZERO
                  END IF
  150             CONTINUE
               ELSE
*
*                 Compute x(j) := x(j) / A(j,j)  - sumj if the dot
*                 product has already been divided by 1/A(j,j).
*
                  X( J ) = X( J ) / TJJS - SUMJ
               END IF
               XMAX = MAX( XMAX, ABS( X( J ) ) )
  160       CONTINUE
         END IF
         SCALE = SCALE / TSCAL
      END IF
*
*     Scale the column norms by 1/TSCAL for return.
*
      IF( TSCAL.NE.ONE ) THEN
         CALL DSCAL( N, ONE / TSCAL, CNORM, 1 )
      END IF
*
      RETURN
*
*     End of DLATRS
*
      END

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -