📄 clalsa.f
字号:
J = NL*NRHS*2
DO 40 JCOL = 1, NRHS
DO 30 JROW = NLF, NLF + NL - 1
J = J + 1
RWORK( J ) = AIMAG( B( JROW, JCOL ) )
30 CONTINUE
40 CONTINUE
CALL SGEMM( 'T', 'N', NL, NRHS, NL, ONE, U( NLF, 1 ), LDU,
$ RWORK( 1+NL*NRHS*2 ), NL, ZERO, RWORK( 1+NL*NRHS ),
$ NL )
JREAL = 0
JIMAG = NL*NRHS
DO 60 JCOL = 1, NRHS
DO 50 JROW = NLF, NLF + NL - 1
JREAL = JREAL + 1
JIMAG = JIMAG + 1
BX( JROW, JCOL ) = CMPLX( RWORK( JREAL ),
$ RWORK( JIMAG ) )
50 CONTINUE
60 CONTINUE
*
* Since B and BX are complex, the following call to SGEMM
* is performed in two steps (real and imaginary parts).
*
* CALL SGEMM( 'T', 'N', NR, NRHS, NR, ONE, U( NRF, 1 ), LDU,
* $ B( NRF, 1 ), LDB, ZERO, BX( NRF, 1 ), LDBX )
*
J = NR*NRHS*2
DO 80 JCOL = 1, NRHS
DO 70 JROW = NRF, NRF + NR - 1
J = J + 1
RWORK( J ) = REAL( B( JROW, JCOL ) )
70 CONTINUE
80 CONTINUE
CALL SGEMM( 'T', 'N', NR, NRHS, NR, ONE, U( NRF, 1 ), LDU,
$ RWORK( 1+NR*NRHS*2 ), NR, ZERO, RWORK( 1 ), NR )
J = NR*NRHS*2
DO 100 JCOL = 1, NRHS
DO 90 JROW = NRF, NRF + NR - 1
J = J + 1
RWORK( J ) = AIMAG( B( JROW, JCOL ) )
90 CONTINUE
100 CONTINUE
CALL SGEMM( 'T', 'N', NR, NRHS, NR, ONE, U( NRF, 1 ), LDU,
$ RWORK( 1+NR*NRHS*2 ), NR, ZERO, RWORK( 1+NR*NRHS ),
$ NR )
JREAL = 0
JIMAG = NR*NRHS
DO 120 JCOL = 1, NRHS
DO 110 JROW = NRF, NRF + NR - 1
JREAL = JREAL + 1
JIMAG = JIMAG + 1
BX( JROW, JCOL ) = CMPLX( RWORK( JREAL ),
$ RWORK( JIMAG ) )
110 CONTINUE
120 CONTINUE
*
130 CONTINUE
*
* Next copy the rows of B that correspond to unchanged rows
* in the bidiagonal matrix to BX.
*
DO 140 I = 1, ND
IC = IWORK( INODE+I-1 )
CALL CCOPY( NRHS, B( IC, 1 ), LDB, BX( IC, 1 ), LDBX )
140 CONTINUE
*
* Finally go through the left singular vector matrices of all
* the other subproblems bottom-up on the tree.
*
J = 2**NLVL
SQRE = 0
*
DO 160 LVL = NLVL, 1, -1
LVL2 = 2*LVL - 1
*
* find the first node LF and last node LL on
* the current level LVL
*
IF( LVL.EQ.1 ) THEN
LF = 1
LL = 1
ELSE
LF = 2**( LVL-1 )
LL = 2*LF - 1
END IF
DO 150 I = LF, LL
IM1 = I - 1
IC = IWORK( INODE+IM1 )
NL = IWORK( NDIML+IM1 )
NR = IWORK( NDIMR+IM1 )
NLF = IC - NL
NRF = IC + 1
J = J - 1
CALL CLALS0( ICOMPQ, NL, NR, SQRE, NRHS, BX( NLF, 1 ), LDBX,
$ B( NLF, 1 ), LDB, PERM( NLF, LVL ),
$ GIVPTR( J ), GIVCOL( NLF, LVL2 ), LDGCOL,
$ GIVNUM( NLF, LVL2 ), LDU, POLES( NLF, LVL2 ),
$ DIFL( NLF, LVL ), DIFR( NLF, LVL2 ),
$ Z( NLF, LVL ), K( J ), C( J ), S( J ), RWORK,
$ INFO )
150 CONTINUE
160 CONTINUE
GO TO 330
*
* ICOMPQ = 1: applying back the right singular vector factors.
*
170 CONTINUE
*
* First now go through the right singular vector matrices of all
* the tree nodes top-down.
*
J = 0
DO 190 LVL = 1, NLVL
LVL2 = 2*LVL - 1
*
* Find the first node LF and last node LL on
* the current level LVL.
*
IF( LVL.EQ.1 ) THEN
LF = 1
LL = 1
ELSE
LF = 2**( LVL-1 )
LL = 2*LF - 1
END IF
DO 180 I = LL, LF, -1
IM1 = I - 1
IC = IWORK( INODE+IM1 )
NL = IWORK( NDIML+IM1 )
NR = IWORK( NDIMR+IM1 )
NLF = IC - NL
NRF = IC + 1
IF( I.EQ.LL ) THEN
SQRE = 0
ELSE
SQRE = 1
END IF
J = J + 1
CALL CLALS0( ICOMPQ, NL, NR, SQRE, NRHS, B( NLF, 1 ), LDB,
$ BX( NLF, 1 ), LDBX, PERM( NLF, LVL ),
$ GIVPTR( J ), GIVCOL( NLF, LVL2 ), LDGCOL,
$ GIVNUM( NLF, LVL2 ), LDU, POLES( NLF, LVL2 ),
$ DIFL( NLF, LVL ), DIFR( NLF, LVL2 ),
$ Z( NLF, LVL ), K( J ), C( J ), S( J ), RWORK,
$ INFO )
180 CONTINUE
190 CONTINUE
*
* The nodes on the bottom level of the tree were solved
* by SLASDQ. The corresponding right singular vector
* matrices are in explicit form. Apply them back.
*
NDB1 = ( ND+1 ) / 2
DO 320 I = NDB1, ND
I1 = I - 1
IC = IWORK( INODE+I1 )
NL = IWORK( NDIML+I1 )
NR = IWORK( NDIMR+I1 )
NLP1 = NL + 1
IF( I.EQ.ND ) THEN
NRP1 = NR
ELSE
NRP1 = NR + 1
END IF
NLF = IC - NL
NRF = IC + 1
*
* Since B and BX are complex, the following call to SGEMM is
* performed in two steps (real and imaginary parts).
*
* CALL SGEMM( 'T', 'N', NLP1, NRHS, NLP1, ONE, VT( NLF, 1 ), LDU,
* $ B( NLF, 1 ), LDB, ZERO, BX( NLF, 1 ), LDBX )
*
J = NLP1*NRHS*2
DO 210 JCOL = 1, NRHS
DO 200 JROW = NLF, NLF + NLP1 - 1
J = J + 1
RWORK( J ) = REAL( B( JROW, JCOL ) )
200 CONTINUE
210 CONTINUE
CALL SGEMM( 'T', 'N', NLP1, NRHS, NLP1, ONE, VT( NLF, 1 ), LDU,
$ RWORK( 1+NLP1*NRHS*2 ), NLP1, ZERO, RWORK( 1 ),
$ NLP1 )
J = NLP1*NRHS*2
DO 230 JCOL = 1, NRHS
DO 220 JROW = NLF, NLF + NLP1 - 1
J = J + 1
RWORK( J ) = AIMAG( B( JROW, JCOL ) )
220 CONTINUE
230 CONTINUE
CALL SGEMM( 'T', 'N', NLP1, NRHS, NLP1, ONE, VT( NLF, 1 ), LDU,
$ RWORK( 1+NLP1*NRHS*2 ), NLP1, ZERO,
$ RWORK( 1+NLP1*NRHS ), NLP1 )
JREAL = 0
JIMAG = NLP1*NRHS
DO 250 JCOL = 1, NRHS
DO 240 JROW = NLF, NLF + NLP1 - 1
JREAL = JREAL + 1
JIMAG = JIMAG + 1
BX( JROW, JCOL ) = CMPLX( RWORK( JREAL ),
$ RWORK( JIMAG ) )
240 CONTINUE
250 CONTINUE
*
* Since B and BX are complex, the following call to SGEMM is
* performed in two steps (real and imaginary parts).
*
* CALL SGEMM( 'T', 'N', NRP1, NRHS, NRP1, ONE, VT( NRF, 1 ), LDU,
* $ B( NRF, 1 ), LDB, ZERO, BX( NRF, 1 ), LDBX )
*
J = NRP1*NRHS*2
DO 270 JCOL = 1, NRHS
DO 260 JROW = NRF, NRF + NRP1 - 1
J = J + 1
RWORK( J ) = REAL( B( JROW, JCOL ) )
260 CONTINUE
270 CONTINUE
CALL SGEMM( 'T', 'N', NRP1, NRHS, NRP1, ONE, VT( NRF, 1 ), LDU,
$ RWORK( 1+NRP1*NRHS*2 ), NRP1, ZERO, RWORK( 1 ),
$ NRP1 )
J = NRP1*NRHS*2
DO 290 JCOL = 1, NRHS
DO 280 JROW = NRF, NRF + NRP1 - 1
J = J + 1
RWORK( J ) = AIMAG( B( JROW, JCOL ) )
280 CONTINUE
290 CONTINUE
CALL SGEMM( 'T', 'N', NRP1, NRHS, NRP1, ONE, VT( NRF, 1 ), LDU,
$ RWORK( 1+NRP1*NRHS*2 ), NRP1, ZERO,
$ RWORK( 1+NRP1*NRHS ), NRP1 )
JREAL = 0
JIMAG = NRP1*NRHS
DO 310 JCOL = 1, NRHS
DO 300 JROW = NRF, NRF + NRP1 - 1
JREAL = JREAL + 1
JIMAG = JIMAG + 1
BX( JROW, JCOL ) = CMPLX( RWORK( JREAL ),
$ RWORK( JIMAG ) )
300 CONTINUE
310 CONTINUE
*
320 CONTINUE
*
330 CONTINUE
*
RETURN
*
* End of CLALSA
*
END
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -