⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 lans_pca.m

📁 模式识别工具包
💻 M
字号:
%	lans_pca	- Principal Component Analysis (batch) %%	[pc_data,pvar,paxis]	= lans_pca(data[,para])%%	_____OUTPUTS____________________________________________________________%	pc_data		projected data				(col vectors)%			(sorted; kth row = kth pc)%	pvar		variance in each principal direction 	(col vector)%			= eigenvalues of covar matrix%			(sorted in descending order)%	paxis		principal axes (unit vector)		(col vectors)%			(sorted according to pvar)%%	_____INPUTS_____________________________________________________________%	data		unormalized data			(col vectors)%	para		see paraget.m				(string)%			-prec used for feature selection%%	_____NOTES______________________________________________________________%	- data is neither mean nor variance normalized%	- added guard to use eye(d) instead if data is nearly identity, this is%	  to ensure results from matlab and matcom matches%	- to get the unit deviation, multiply sqrt(pvar)*paxis%%	_____SEE ALSO___________________________________________________________%	lans_eigsort	ipca%%	(C) 2000.04.04 Kui-yu Chang%	http://lans.ece.utexas.edu/~kuiyu%	This program is free software; you can redistribute it and/or modify%	it under the terms of the GNU General Public License as published by%	the Free Software Foundation; either version 2 of the License, or%	(at your option) any later version.%%	This program is distributed in the hope that it will be useful,%	but WITHOUT ANY WARRANTY; without even the implied warranty of%	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the%	GNU General Public License for more details.%%	You should have received a copy of the GNU General Public License%	along with this program; if not, write to the Free Software%	Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA%	or check%			http://www.gnu.org/function	[pc_data,pvar,paxis]	= lans_pca(data,para)if nargin<2	para='';endprec	= paraget('-prec',para);s	= cov(data');r	= rank(s);%----------	check near identity, to ensure same results for matcom and matlabif r<length(s)%	error('linear dependence detected in data');	err	= 2*prec;else	dif	= s-eye(r);	dif	= dif.*dif;	err	= sum(sum(dif))/(r*r);endif err>prec	[evector evalue]= lans_eigsort(s,para);else	[evector evalue]= lans_eigsort(eye(r),para);endpaxis		= evector;pc_data		= paxis'*data;pvar		= diag(evalue);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -