📄 lans_pca.m
字号:
% lans_pca - Principal Component Analysis (batch) %% [pc_data,pvar,paxis] = lans_pca(data[,para])%% _____OUTPUTS____________________________________________________________% pc_data projected data (col vectors)% (sorted; kth row = kth pc)% pvar variance in each principal direction (col vector)% = eigenvalues of covar matrix% (sorted in descending order)% paxis principal axes (unit vector) (col vectors)% (sorted according to pvar)%% _____INPUTS_____________________________________________________________% data unormalized data (col vectors)% para see paraget.m (string)% -prec used for feature selection%% _____NOTES______________________________________________________________% - data is neither mean nor variance normalized% - added guard to use eye(d) instead if data is nearly identity, this is% to ensure results from matlab and matcom matches% - to get the unit deviation, multiply sqrt(pvar)*paxis%% _____SEE ALSO___________________________________________________________% lans_eigsort ipca%% (C) 2000.04.04 Kui-yu Chang% http://lans.ece.utexas.edu/~kuiyu% This program is free software; you can redistribute it and/or modify% it under the terms of the GNU General Public License as published by% the Free Software Foundation; either version 2 of the License, or% (at your option) any later version.%% This program is distributed in the hope that it will be useful,% but WITHOUT ANY WARRANTY; without even the implied warranty of% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the% GNU General Public License for more details.%% You should have received a copy of the GNU General Public License% along with this program; if not, write to the Free Software% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA% or check% http://www.gnu.org/function [pc_data,pvar,paxis] = lans_pca(data,para)if nargin<2 para='';endprec = paraget('-prec',para);s = cov(data');r = rank(s);%---------- check near identity, to ensure same results for matcom and matlabif r<length(s)% error('linear dependence detected in data'); err = 2*prec;else dif = s-eye(r); dif = dif.*dif; err = sum(sum(dif))/(r*r);endif err>prec [evector evalue]= lans_eigsort(s,para);else [evector evalue]= lans_eigsort(eye(r),para);endpaxis = evector;pc_data = paxis'*data;pvar = diag(evalue);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -