📄 lans_asmoothness.m
字号:
% lans_asmoothness- Compute smoothness of curve using change in angles!
%
% [asmoo,fobtuse] = lans_asmoothness(psurf);
%
% _____OUTPUTS____________________________________________________________
% asmoo Single metric for assessing smoothness Qx1 (col vector)
% average angle deviation (degrees)
% fobtuse fraction of angles being obtuse Qx1 (col vector)
% [0,1]
% w.r.t. each manifold dimension
% Q = # of manifold dimensions
%
% _____INPUTS_____________________________________________________________
% psurf subset of psurf with M latent/reference points (psurf)
%
% _____NOTES______________________________________________________________
% - computes the average absolute angle deviation over all points and
% manifolds using unitgradients
% - less susceptible to singularities than lans_smoothness
%
% _____SEE ALSO___________________________________________________________
% lans_smoothness
%
% (C) 2000.07.09 Kui-yu Chang
% http://lans.ece.utexas.edu/~kuiyu
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
% or check
% http://www.gnu.org/
% Need to check why complex angles are formed
function [asmoo,fobtuse] = lans_asmoothness(psurf);
threshold = 1e-10;
debug = 0;
[D M] = size(psurf.f);
Q = psurf.Q;
asmoo = zeros(Q,1);
fobtuse = zeros(Q,1);
if isfield(psurf,'xidx') % GTM based psurf
grad = lans_psurfgrad(psurf);
xidx = psurf.xidx;
Md = size(psurf.xidx);
%_____ Q-D manifold Q>1
for q=1:Q
dangle = [];
for m=1:Md(q)
cidx = shiftdim(xidx,q-1);
theidx = cidx(m,:);
df = squeeze(grad(:,q,theidx));
dfmag = sqrt(sum(df.*df));
% throw away zero vectors
keep = find(dfmag>threshold);
udf = df(:,keep)./(ones(D,1)*dfmag(:,keep));
dangle = [dangle acos(sum(udf(:,1:end-1).*udf(:,2:end)))];
end
nobtuse = find(dangle>=pi/2);
fobtuse(q) = length(nobtuse)/length(dangle);
% dangle is concatenation of all M*M angles
% asmoo(q) = mean(dangle);
asmoo(q) = sum(dangle)/M;
end
else % others (assumed 1-D only)
% df = lans_gradient(psurf,'-gradient right');
df = diff(psurf.f')'; %equivalent to above
dfmag = sqrt(sum(df.*df));
% throw away zero vectors
keep = find(dfmag>threshold);
udf = df(:,keep)./(ones(D,1)*dfmag(:,keep));
dangle = acos(sum(udf(:,1:end-1).*udf(:,2:end)));
% asmoo = mean(dangle);
% Taking the sum is a more accurate measure roughness, indept of M
asmoo = sum(dangle);
nobtuse = find(dangle>=pi/2);
fobtuse = length(nobtuse)/length(dangle);
%_____debug
if debug
figure(1)
clf;
lans_plotgrad(psurf.f(:,1:end-1),udf,'r-');
end
end
asmoo = real(asmoo); % need some checking here
asmoo = asmoo*180/pi; % convert to degrees
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -