📄 llr.m
字号:
% llr - Local Linear Regression%% [ny] = llr(x,y,xwant,para)%% _____OUTPUTS____________________________________________________________% ny new y corresponding to x(xwant) (col vectors)%% _____INPUTS_____________________________________________________________% x independent scalars (row vector)% y dependent vector (col vectors)% (independently smoothed in each row/dim)% xwant indices of x whose llr value is desired (row vector)% para see lanspara.m paraget.m (string)% -kernel -smoopara%% _____SEE ALSO___________________________________________________________% wlsqr%% (C) 1998.4.20 Kui-yu Chang% http://lans.ece.utexas.edu/~kuiyu% This program is free software; you can redistribute it and/or modify% it under the terms of the GNU General Public License as published by% the Free Software Foundation; either version 2 of the License, or% (at your option) any later version.%% This program is distributed in the hope that it will be useful,% but WITHOUT ANY WARRANTY; without even the implied warranty of% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the% GNU General Public License for more details.%% You should have received a copy of the GNU General Public License% along with this program; if not, write to the Free Software% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA% or check% http://www.gnu.org/function [ny] = llr(x,y,xwant,para)[d n] = size(y);nwant = length(xwant);if nargin<4 para = []end%----- get parameterskernel = paraget('-kernel',para);order = paraget('-smoopara',para);%----- 1: Symmetric Cubic Kernel -----------------------------------------------if (kernel==1) for i = 1:nwant xi = x(xwant(i)); [nx,icnx,w,ix] = findw(x,xwant(i),para); %----- local polynomial regression (smoothing) for dim=1:d ny(dim,i) = wlsqr(nx,y(dim,ix),w,icnx,order); end end % iend %if%----- end Symmetric Cubic Kernel ----------------------------------------------
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -