⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 csdn技术中心 聚类算法的一个教程.htm

📁 数据挖掘Apriori算法的java源码
💻 HTM
📖 第 1 页 / 共 2 页
字号:
          <TD vAlign=top bgColor=#ededed>
            <TABLE cellSpacing=0 cellPadding=0 width="100%" border=0>
              <TBODY>
              <TR>
                <TD align=right background="CSDN技术中心 聚类算法的一个教程.files/top.gif" 
                height=27><FONT 
              class=fonttitle>积极原创作者&nbsp;</FONT></TD></TR></TBODY></TABLE>
            <TABLE cellSpacing=1 cellPadding=2 width="100%" border=0>
              <TBODY>
              <TR>
                <TD align=right><A 
                  href="http://dev.csdn.net/user/ixue">ixue</A>&nbsp;<FONT 
                  color=#ff0000>(20)</FONT></TD></TR>
              <TR>
                <TD align=right><A 
                  href="http://dev.csdn.net/user/Solstice">Solstice</A>&nbsp;<FONT 
                  color=#ff0000>(7)</FONT></TD></TR>
              <TR>
                <TD align=right><A 
                  href="http://dev.csdn.net/user/retni">retni</A>&nbsp;<FONT 
                  color=#ff0000>(2)</FONT></TD></TR>
              <TR>
                <TD align=right><A 
                  href="http://dev.csdn.net/user/zhangweis">zhangweis</A>&nbsp;<FONT 
                  color=#ff0000>(4)</FONT></TD></TR>
              <TR>
                <TD align=right><A 
                  href="http://dev.csdn.net/user/legendinfo">legendinfo</A>&nbsp;<FONT 
                  color=#ff0000>(12)</FONT></TD></TR>
              <TR>
                <TD align=right><A 
                  href="http://dev.csdn.net/user/NETOCOOL">NETOCOOL</A>&nbsp;<FONT 
                  color=#ff0000>(23)</FONT></TD></TR>
              <TR>
                <TD align=right><A 
                  href="http://dev.csdn.net/user/leek2000">leek2000</A>&nbsp;<FONT 
                  color=#ff0000>(4)</FONT></TD></TR>
              <TR>
                <TD align=right><A 
                  href="http://dev.csdn.net/user/alon21">alon21</A>&nbsp;<FONT 
                  color=#ff0000>(1)</FONT></TD></TR>
              <TR>
                <TD align=right><A 
                  href="http://dev.csdn.net/user/niaoked">niaoked</A>&nbsp;<FONT 
                  color=#ff0000>(4)</FONT></TD></TR>
              <TR>
                <TD align=right><A 
                  href="http://dev.csdn.net/user/huitiansou">huitiansou</A>&nbsp;<FONT 
                  color=#ff0000>(3)</FONT></TD></TR></TBODY></TABLE></TD></TR></TBODY></TABLE></TD>
    <TD vAlign=top width=786>
      <TABLE cellPadding=4 width="100%" border=0>
        <TBODY>
        <TR>
          <TD width=10 height=19></TD>
          <TD height=19>
            <TABLE cellSpacing=3 cellPadding=3 width="100%" border=0>
              <TBODY>
              <TR>
                <TD><A href="http://www.csdn.net/">CSDN</A> - <A 
                  href="http://dev.csdn.net/">文档中心</A> - <FONT color=#003399><A 
                  id=ArticleTitle1_ArticleTitle1_hlClass 
                  href="http://dev.csdn.net/articlelist.aspx?c=13">其他</A></FONT> 
                </TD>
                <TD align=right>阅读:<SPAN 
                  id=ArticleTitle1_ArticleTitle1_lblReadCount>170</SPAN> 
                  &nbsp;&nbsp;评论: <SPAN 
                  id=ArticleTitle1_ArticleTitle1_lblCommentCount>0</SPAN> 
                  &nbsp;&nbsp; <A 
                  href="http://dev.csdn.net/Develop/article/42/article/46/46175.shtm#Comment">参与评论</A> 
                </TD></TR></TBODY></TABLE>
            <TABLE cellSpacing=3 cellPadding=3 width="100%" bgColor=#eeeeee 
            border=0>
              <TBODY>
              <TR>
                <TD noWrap width=60 height=0></TD>
                <TD></TD></TR>
              <TR>
                <TD noWrap align=middle bgColor=#003399 height=16><FONT 
                  color=#ffffff>标题</FONT></TD>
                <TD><B>&nbsp; <SPAN 
                  id=ArticleTitle1_ArticleTitle1_lblTitle>聚类算法的一个教程</SPAN></B>&nbsp;&nbsp;&nbsp;&nbsp; 
                  选择自 <A id=ArticleTitle1_ArticleTitle1_AuthorLink 
                  href="http://dev.csdn.net/user/laughcry2002">laughcry2002</A> 
                  的 Blog </TD></TR>
              <TR>
                <TD align=middle bgColor=#003399 height=16><FONT 
                  color=#ffffff>关键字</FONT></TD>
                <TD width=500>&nbsp; <SPAN 
                  id=ArticleTitle1_ArticleTitle1_lblKeywords>聚类算法的一个教程</SPAN></TD></TR>
              <TR>
                <TD align=middle bgColor=#003399 height=16><FONT 
                  color=#ffffff>出处</FONT></TD>
                <TD>&nbsp; <SPAN 
                  id=ArticleTitle1_ArticleTitle1_lblSource></SPAN></TD></TR></TBODY></TABLE></TD></TR>
        <TR>
          <TD width=10></TD>
          <TD><SPAN id=ArticleContent1_ArticleContent1_lblContent>原文出自: <A 
            href="http://www.elet.polimi.it/upload/matteucc/Clustering/tutorial_html/hierarchical.html">http://www.elet.polimi.it/upload/matteucc/Clustering/tutorial_html/hierarchical.html</A><BR>辅助资料: 
            <A 
            href="http://149.170.199.144/multivar/ca.htm">http://149.170.199.144/multivar/ca.htm</A><BR><BR>层次式聚类方法<BR><BR>
            <P align=justify><FONT face="Arial, Helvetica, sans-serif" 
            size=+1><EM>How They Work</EM></FONT><FONT 
            face="Times New Roman, Times, serif"><BR><BR>给定要聚类的N的对象以及N*N的距离矩阵(或者是相似性矩阵), 
            层次式聚类方法的基本步骤(参看<A 
            href="http://www.elet.polimi.it/upload/matteucc/Clustering/tutorial_html/hierarchical.html#johnson">S.C. 
            Johnson in 1967</A>)如下:</FONT></P>
            <OL>
              <LI><FONT face="Times New Roman, Times, serif" 
              align="justify">将每个对象归为一组, 共得到N组, 每组仅包含一个对象. 
              组与组之间的距离就是它们所包含的对象之间的距离.</FONT> 
              <LI><FONT face="Times New Roman, Times, serif">将最近的两个组合并成一组, 
              于是总的组数少了一个.</FONT> 
              <LI><FONT 
              face="Times New Roman, Times, serif">重新计算新的组与所有旧组之间的距离.</FONT> 
              <LI><FONT face="Times New Roman, Times, serif">重复第2步和第3步, 
              直到最后合并成一个组为止(此组包含了N个对象).</FONT></LI></OL>
            <P><FONT face="Times New Roman, Times, serif">根据步骤3的不同, 
            可将层次式聚类方法分为几类: <EM>single-linkage,</EM> <EM>complete-linkage</EM> 以及 
            <EM>average-linkage</EM> 聚类方法等.<BR><EM>single-linkage</EM> 聚类法(也称 
            <EM>connectedness</EM> 或 <EM>minimum</EM> 方法): 
            组间距离等于两组对象之间的<U>最小距离</U>. <BR><EM>complete-linkage</EM>&nbsp;聚类法 (也称 
            <EM>diameter</EM> 或 <EM>maximum</EM> 方法): 
            组间距离等于两组对象之间的<U>最大距离</U>.<BR><EM>average-linkage</EM> 聚类法: 
            组间距离等于两组对象之间的<U>平均距离</U>.<BR>average-link 聚类的一个变种是<A 
            href="http://www.elet.polimi.it/upload/matteucc/Clustering/tutorial_html/hierarchical.html#dandrade">R. 
            D'Andrade (1978)</A> 的UCLUS方法, 它使用的是<U>median</U>距离, 在受异常数据对象的影响方面, 
            它要比平均距离表现更佳一些.<BR><BR></P>
            <P align=justify><FONT face="Arial, Helvetica, sans-serif" 
            size=+1><EM>Single-Linkage Clustering: The 
            Algorithm</EM></FONT><FONT 
            face="Times New Roman, Times, serif"><BR>Let’s now take a deeper 
            look at how Johnson’s algorithm works in the case of single-linkage 
            clustering.<BR>The algorithm is an agglomerative scheme that erases 
            rows and columns in the proximity matrix as old clusters are merged 
            into new ones.</FONT></P>
            <P align=justify><FONT face="Times New Roman, Times, serif">The N*N 
            proximity matrix is D = [d(i,j)]. The clusterings are assigned 
            sequence numbers 0,1,......, (n-1) and L(k) is the level of the kth 
            clustering. A cluster with sequence number m is denoted (m) and the 
            proximity between clusters (r) and (s) is denoted d [(r),(s)]. 
            </FONT></P>
            <P align=justify><FONT face="Times New Roman, Times, serif">The 
            algorithm is composed of the following steps:<BR></P>
            <OL>
              <LI><EM><FONT face="Times New Roman, Times, serif" 
              align="justify">Begin with the disjoint clustering having level 
              L(0) = 0 and sequence number m = 0.<BR></FONT></EM>
              <LI><EM><FONT face="Times New Roman, Times, serif">Find the least 
              dissimilar pair of clusters in the current clustering, say pair 
              (r), (s), according to</FONT><BR><FONT 
              face="Times New Roman, Times, serif"><BR>d[(r),(s)] = min 
              d[(i),(j)]</FONT><BR><FONT 
              face="Times New Roman, Times, serif"><BR>where the minimum is over 
              all pairs of clusters in the current clustering.<BR></FONT></EM>
              <LI><EM><FONT face="Times New Roman, Times, serif">Increment the 
              sequence number : m = m +1. Merge clusters (r) and (s) into a 
              single cluster to form the next clustering m. Set the level of 
              this clustering to</FONT><BR><FONT 
              face="Times New Roman, Times, serif"><BR>L(m) = 
              d[(r),(s)]<BR></FONT></EM>
              <LI><EM><FONT face="Times New Roman, Times, serif">Update the 
              proximity matrix, D, by deleting the rows and columns 
              corresponding to clusters (r) and (s) and adding a row and column 
              corresponding to the newly formed cluster. The proximity between 
              the new cluster, denoted (r,s) and old cluster (k) is defined in 
              this way:</FONT><BR><FONT 
              face="Times New Roman, Times, serif"><BR>d[(k), (r,s)] = min 
              d[(k),(r)], d[(k),(s)]<BR></FONT></EM>
              <LI><EM><FONT face="Times New Roman, Times, serif">If all objects 
              are in one cluster, stop. Else, go to step 2.</FONT></EM> 
            </LI></OL></FONT></FONT></SPAN><BR>
            <DIV 
            style="FONT-SIZE: 14px; LINE-HEIGHT: 25px"><STRONG>作者Blog:</STRONG><A 
            id=ArticleContent1_ArticleContent1_AuthorBlogLink 
            href="http://blog.csdn.net/laughcry2002/" 
            target=_blank>http://blog.csdn.net/laughcry2002/</A></DIV>
            <DIV 
            style="FONT-SIZE: 14px; COLOR: #900; LINE-HEIGHT: 25px"><STRONG>相关文章</STRONG></DIV>
            <TABLE id=ArticleContent1_ArticleContent1_RelatedArticles 
            style="BORDER-COLLAPSE: collapse" cellSpacing=0 border=0>
              <TBODY>
              <TR>
                <TD><A 
                  href="http://dev.csdn.net/Develop/article/42/article/46/article/46/46175.shtm">聚类算法的一个教程</A> 
                </TD></TR>
              <TR>
                <TD><A 
                  href="http://dev.csdn.net/Develop/article/42/article/46/article/42/42413.shtm">JDK 
                  1.5引入的新特性 -- 泛型</A> </TD></TR>
              <TR>
                <TD><A 
                  href="http://dev.csdn.net/Develop/article/42/article/46/article/38/38009.shtm">DNA单字符表示法的兼并性</A> 
                </TD></TR></TBODY></TABLE></TD></TR></TBODY></TABLE><A name=#Comment></A>
      <TABLE cellPadding=0 width="100%" border=0>
        <TBODY>
        <TR>
          <TD>
            <TABLE cellSpacing=0 cellPadding=0 width="100%" align=center 
            bgColor=#006699 border=0>
              <TBODY>
              <TR bgColor=#006699>
                <TD id=white align=middle width=556 bgColor=#006699><FONT 
                  color=#ffffff>对该文的评论</FONT> </TD></TR></TBODY></TABLE>
            <DIV align=right><A id=CommnetList1_CommnetList1_Morelink 
            href="http://comment.csdn.net/Comment.aspx?c=2&amp;s=46175">【评论】</A> 
            <A id=CommnetList1_CommnetList1_Hyperlink1 
            href="javascript:window.close();">【关闭】</A> 
      </DIV><BR></TD></TR></TBODY></TABLE></TD></TR></TBODY></TABLE></FORM><!-- 版权 -->
<HR align=center width=770 noShade SIZE=1>

<TABLE cellSpacing=0 cellPadding=0 width=500 align=center border=0>
  <TBODY>
  <TR>
    <TD vAlign=bottom align=middle height=10><A 
      href="http://www.csdn.net/intro/intro.asp?id=2">网站简介</A> - <A 
      href="http://www.csdn.net/intro/intro.asp?id=5">广告服务</A> - <A 
      href="http://www.csdn.net/map/map.shtm">网站地图</A> - <A 
      href="http://www.csdn.net/help/help.asp">帮助信息</A> - <A 
      href="http://www.csdn.net/intro/intro.asp?id=2">联系方式</A> - <A 
      href="http://www.csdn.net/english">English</A> </TD>
    <TD align=middle rowSpan=3><A 
      href="http://www.hd315.gov.cn/beian/view.asp?bianhao=010202001032100010"><IMG 
      height=48 src="CSDN技术中心 聚类算法的一个教程.files/biaoshi.gif" width=40 
    border=0></A></TD></TR>
  <TR>
    <TD vAlign=top align=middle>北京百联美达美数码科技有限公司 版权所有 京ICP证020026号</TD></TR>
  <TR align=middle>
    <TD vAlign=top><FONT face=Verdana>Copyright &copy; CSDN.NET, Inc. All Rights 
      Reserved</FONT></TD></TR>
  <TR>
    <TD height=15></TD></TR></TBODY></TABLE><!-- /版权 -->
<SCRIPT>
      document.write("<img src=http://count.csdn.net/count/pageview1.asp?columnid=4&itemid=11 border=0 width=0 height=0>");
    </SCRIPT>
</BODY></HTML>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -