📄 mgcmatrix3.cpp
字号:
rfRAngle = 0.0; // any angle works
rfYAngle = rfRAngle - fRmY;
return false;
}
}
else
{
// WARNING. Not a unique solution.
float fRpY = MgcMath::ATan2(m_aafEntry[2][1],m_aafEntry[2][2]);
rfRAngle = 0.0; // any angle works
rfYAngle = fRpY - rfRAngle;
return false;
}
}
//----------------------------------------------------------------------------
bool MgcMatrix3::ToEulerAnglesZXY (float& rfYAngle, float& rfPAngle,
float& rfRAngle)
{
// rot = cy*cz-sx*sy*sz -cx*sz cz*sy+cy*sx*sz
// cz*sx*sy+cy*sz cx*cz -cy*cz*sx+sy*sz
// -cx*sy sx cx*cy
rfPAngle = MgcMath::ASin(m_aafEntry[2][1]);
if ( rfPAngle < MgcMath::HALF_PI )
{
if ( rfPAngle > -MgcMath::HALF_PI )
{
rfYAngle = MgcMath::ATan2(-m_aafEntry[0][1],m_aafEntry[1][1]);
rfRAngle = MgcMath::ATan2(-m_aafEntry[2][0],m_aafEntry[2][2]);
return true;
}
else
{
// WARNING. Not a unique solution.
float fRmY = MgcMath::ATan2(m_aafEntry[0][2],m_aafEntry[0][0]);
rfRAngle = 0.0; // any angle works
rfYAngle = rfRAngle - fRmY;
return false;
}
}
else
{
// WARNING. Not a unique solution.
float fRpY = MgcMath::ATan2(m_aafEntry[0][2],m_aafEntry[0][0]);
rfRAngle = 0.0; // any angle works
rfYAngle = fRpY - rfRAngle;
return false;
}
}
//----------------------------------------------------------------------------
bool MgcMatrix3::ToEulerAnglesZYX (float& rfYAngle, float& rfPAngle,
float& rfRAngle)
{
// rot = cy*cz cz*sx*sy-cx*sz cx*cz*sy+sx*sz
// cy*sz cx*cz+sx*sy*sz -cz*sx+cx*sy*sz
// -sy cy*sx cx*cy
rfPAngle = MgcMath::ASin(-m_aafEntry[2][0]);
if ( rfPAngle < MgcMath::HALF_PI )
{
if ( rfPAngle > -MgcMath::HALF_PI )
{
rfYAngle = MgcMath::ATan2(m_aafEntry[1][0],m_aafEntry[0][0]);
rfRAngle = MgcMath::ATan2(m_aafEntry[2][1],m_aafEntry[2][2]);
return true;
}
else
{
// WARNING. Not a unique solution.
float fRmY = MgcMath::ATan2(-m_aafEntry[0][1],m_aafEntry[0][2]);
rfRAngle = 0.0; // any angle works
rfYAngle = rfRAngle - fRmY;
return false;
}
}
else
{
// WARNING. Not a unique solution.
float fRpY = MgcMath::ATan2(-m_aafEntry[0][1],m_aafEntry[0][2]);
rfRAngle = 0.0; // any angle works
rfYAngle = fRpY - rfRAngle;
return false;
}
}
//----------------------------------------------------------------------------
void MgcMatrix3::FromEulerAnglesXYZ (float fYAngle, float fPAngle,
float fRAngle)
{
MgcReal fCos, fSin;
fCos = MgcMath::Cos(fYAngle);
fSin = MgcMath::Sin(fYAngle);
MgcMatrix3 kXMat(1.0,0.0,0.0,0.0,fCos,-fSin,0.0,fSin,fCos);
fCos = MgcMath::Cos(fPAngle);
fSin = MgcMath::Sin(fPAngle);
MgcMatrix3 kYMat(fCos,0.0,fSin,0.0,1.0,0.0,-fSin,0.0,fCos);
fCos = MgcMath::Cos(fRAngle);
fSin = MgcMath::Sin(fRAngle);
MgcMatrix3 kZMat(fCos,-fSin,0.0,fSin,fCos,0.0,0.0,0.0,1.0);
*this = kXMat*(kYMat*kZMat);
}
//----------------------------------------------------------------------------
void MgcMatrix3::FromEulerAnglesXZY (float fYAngle, float fPAngle,
float fRAngle)
{
MgcReal fCos, fSin;
fCos = MgcMath::Cos(fYAngle);
fSin = MgcMath::Sin(fYAngle);
MgcMatrix3 kXMat(1.0,0.0,0.0,0.0,fCos,-fSin,0.0,fSin,fCos);
fCos = MgcMath::Cos(fPAngle);
fSin = MgcMath::Sin(fPAngle);
MgcMatrix3 kZMat(fCos,-fSin,0.0,fSin,fCos,0.0,0.0,0.0,1.0);
fCos = MgcMath::Cos(fRAngle);
fSin = MgcMath::Sin(fRAngle);
MgcMatrix3 kYMat(fCos,0.0,fSin,0.0,1.0,0.0,-fSin,0.0,fCos);
*this = kXMat*(kZMat*kYMat);
}
//----------------------------------------------------------------------------
void MgcMatrix3::FromEulerAnglesYXZ (float fYAngle, float fPAngle,
float fRAngle)
{
MgcReal fCos, fSin;
fCos = MgcMath::Cos(fYAngle);
fSin = MgcMath::Sin(fYAngle);
MgcMatrix3 kYMat(fCos,0.0,fSin,0.0,1.0,0.0,-fSin,0.0,fCos);
fCos = MgcMath::Cos(fPAngle);
fSin = MgcMath::Sin(fPAngle);
MgcMatrix3 kXMat(1.0,0.0,0.0,0.0,fCos,-fSin,0.0,fSin,fCos);
fCos = MgcMath::Cos(fRAngle);
fSin = MgcMath::Sin(fRAngle);
MgcMatrix3 kZMat(fCos,-fSin,0.0,fSin,fCos,0.0,0.0,0.0,1.0);
*this = kYMat*(kXMat*kZMat);
}
//----------------------------------------------------------------------------
void MgcMatrix3::FromEulerAnglesYZX (float fYAngle, float fPAngle,
float fRAngle)
{
MgcReal fCos, fSin;
fCos = MgcMath::Cos(fYAngle);
fSin = MgcMath::Sin(fYAngle);
MgcMatrix3 kYMat(fCos,0.0,fSin,0.0,1.0,0.0,-fSin,0.0,fCos);
fCos = MgcMath::Cos(fPAngle);
fSin = MgcMath::Sin(fPAngle);
MgcMatrix3 kZMat(fCos,-fSin,0.0,fSin,fCos,0.0,0.0,0.0,1.0);
fCos = MgcMath::Cos(fRAngle);
fSin = MgcMath::Sin(fRAngle);
MgcMatrix3 kXMat(1.0,0.0,0.0,0.0,fCos,-fSin,0.0,fSin,fCos);
*this = kYMat*(kZMat*kXMat);
}
//----------------------------------------------------------------------------
void MgcMatrix3::FromEulerAnglesZXY (float fYAngle, float fPAngle,
float fRAngle)
{
MgcReal fCos, fSin;
fCos = MgcMath::Cos(fYAngle);
fSin = MgcMath::Sin(fYAngle);
MgcMatrix3 kZMat(fCos,-fSin,0.0,fSin,fCos,0.0,0.0,0.0,1.0);
fCos = MgcMath::Cos(fPAngle);
fSin = MgcMath::Sin(fPAngle);
MgcMatrix3 kXMat(1.0,0.0,0.0,0.0,fCos,-fSin,0.0,fSin,fCos);
fCos = MgcMath::Cos(fRAngle);
fSin = MgcMath::Sin(fRAngle);
MgcMatrix3 kYMat(fCos,0.0,fSin,0.0,1.0,0.0,-fSin,0.0,fCos);
*this = kZMat*(kXMat*kYMat);
}
//----------------------------------------------------------------------------
void MgcMatrix3::FromEulerAnglesZYX (float fYAngle, float fPAngle,
float fRAngle)
{
MgcReal fCos, fSin;
fCos = MgcMath::Cos(fYAngle);
fSin = MgcMath::Sin(fYAngle);
MgcMatrix3 kZMat(fCos,-fSin,0.0,fSin,fCos,0.0,0.0,0.0,1.0);
fCos = MgcMath::Cos(fPAngle);
fSin = MgcMath::Sin(fPAngle);
MgcMatrix3 kYMat(fCos,0.0,fSin,0.0,1.0,0.0,-fSin,0.0,fCos);
fCos = MgcMath::Cos(fRAngle);
fSin = MgcMath::Sin(fRAngle);
MgcMatrix3 kXMat(1.0,0.0,0.0,0.0,fCos,-fSin,0.0,fSin,fCos);
*this = kZMat*(kYMat*kXMat);
}
//----------------------------------------------------------------------------
void MgcMatrix3::Tridiagonal (MgcReal afDiag[3], MgcReal afSubDiag[3])
{
// Householder reduction T = Q^t M Q
// Input:
// mat, symmetric 3x3 matrix M
// Output:
// mat, orthogonal matrix Q
// diag, diagonal entries of T
// subd, subdiagonal entries of T (T is symmetric)
MgcReal fA = m_aafEntry[0][0];
MgcReal fB = m_aafEntry[0][1];
MgcReal fC = m_aafEntry[0][2];
MgcReal fD = m_aafEntry[1][1];
MgcReal fE = m_aafEntry[1][2];
MgcReal fF = m_aafEntry[2][2];
afDiag[0] = fA;
afSubDiag[2] = 0.0;
if ( MgcMath::Abs(fC) >= EPSILON )
{
MgcReal fLength = MgcMath::Sqrt(fB*fB+fC*fC);
MgcReal fInvLength = 1.0/fLength;
fB *= fInvLength;
fC *= fInvLength;
MgcReal fQ = 2.0*fB*fE+fC*(fF-fD);
afDiag[1] = fD+fC*fQ;
afDiag[2] = fF-fC*fQ;
afSubDiag[0] = fLength;
afSubDiag[1] = fE-fB*fQ;
m_aafEntry[0][0] = 1.0;
m_aafEntry[0][1] = 0.0;
m_aafEntry[0][2] = 0.0;
m_aafEntry[1][0] = 0.0;
m_aafEntry[1][1] = fB;
m_aafEntry[1][2] = fC;
m_aafEntry[2][0] = 0.0;
m_aafEntry[2][1] = fC;
m_aafEntry[2][2] = -fB;
}
else
{
afDiag[1] = fD;
afDiag[2] = fF;
afSubDiag[0] = fB;
afSubDiag[1] = fE;
m_aafEntry[0][0] = 1.0;
m_aafEntry[0][1] = 0.0;
m_aafEntry[0][2] = 0.0;
m_aafEntry[1][0] = 0.0;
m_aafEntry[1][1] = 1.0;
m_aafEntry[1][2] = 0.0;
m_aafEntry[2][0] = 0.0;
m_aafEntry[2][1] = 0.0;
m_aafEntry[2][2] = 1.0;
}
}
//----------------------------------------------------------------------------
bool MgcMatrix3::QLAlgorithm (MgcReal afDiag[3], MgcReal afSubDiag[3])
{
// QL iteration with implicit shifting to reduce matrix from tridiagonal
// to diagonal
for (int i0 = 0; i0 < 3; i0++)
{
const int iMaxIter = 32;
int iIter;
for (iIter = 0; iIter < iMaxIter; iIter++)
{
int i1;
for (i1 = i0; i1 <= 1; i1++)
{
MgcReal fSum = MgcMath::Abs(afDiag[i1]) +
MgcMath::Abs(afDiag[i1+1]);
if ( MgcMath::Abs(afSubDiag[i1]) + fSum == fSum )
break;
}
if ( i1 == i0 )
break;
MgcReal fTmp0 = (afDiag[i0+1]-afDiag[i0])/(2.0*afSubDiag[i0]);
MgcReal fTmp1 = MgcMath::Sqrt(fTmp0*fTmp0+1.0);
if ( fTmp0 < 0.0 )
fTmp0 = afDiag[i1]-afDiag[i0]+afSubDiag[i0]/(fTmp0-fTmp1);
else
fTmp0 = afDiag[i1]-afDiag[i0]+afSubDiag[i0]/(fTmp0+fTmp1);
MgcReal fSin = 1.0;
MgcReal fCos = 1.0;
MgcReal fTmp2 = 0.0;
for (int i2 = i1-1; i2 >= i0; i2--)
{
MgcReal fTmp3 = fSin*afSubDiag[i2];
MgcReal fTmp4 = fCos*afSubDiag[i2];
if ( fabs(fTmp3) >= fabs(fTmp0) )
{
fCos = fTmp0/fTmp3;
fTmp1 = MgcMath::Sqrt(fCos*fCos+1.0);
afSubDiag[i2+1] = fTmp3*fTmp1;
fSin = 1.0/fTmp1;
fCos *= fSin;
}
else
{
fSin = fTmp3/fTmp0;
fTmp1 = MgcMath::Sqrt(fSin*fSin+1.0);
afSubDiag[i2+1] = fTmp0*fTmp1;
fCos = 1.0/fTmp1;
fSin *= fCos;
}
fTmp0 = afDiag[i2+1]-fTmp2;
fTmp1 = (afDiag[i2]-fTmp0)*fSin+2.0*fTmp4*fCos;
fTmp2 = fSin*fTmp1;
afDiag[i2+1] = fTmp0+fTmp2;
fTmp0 = fCos*fTmp1-fTmp4;
for (int iRow = 0; iRow < 3; iRow++)
{
fTmp3 = m_aafEntry[iRow][i2+1];
m_aafEntry[iRow][i2+1] = fSin*m_aafEntry[iRow][i2] +
fCos*fTmp3;
m_aafEntry[iRow][i2] = fCos*m_aafEntry[iRow][i2] -
fSin*fTmp3;
}
}
afDiag[i0] -= fTmp2;
afSubDiag[i0] = fTmp0;
afSubDiag[i1] = 0.0;
}
if ( iIter == iMaxIter )
{
// should not get here under normal circumstances
return false;
}
}
return true;
}
//----------------------------------------------------------------------------
void MgcMatrix3::EigenSolveSymmetric (MgcReal afEigenvalue[3],
MgcVector3 akEigenvector[3]) const
{
MgcMatrix3 kMatrix = *this;
MgcReal afSubDiag[3];
kMatrix.Tridiagonal(afEigenvalue,afSubDiag);
kMatrix.QLAlgorithm(afEigenvalue,afSubDiag);
for (int i = 0; i < 3; i++)
{
akEigenvector[i][0] = kMatrix[0][i];
akEigenvector[i][1] = kMatrix[1][i];
akEigenvector[i][2] = kMatrix[2][i];
}
// make eigenvectors form a right--handed system
MgcVector3 kCross = akEigenvector[1].Cross(akEigenvector[2]);
MgcReal fDet = akEigenvector[0].Dot(kCross);
if ( fDet < 0.0 )
{
akEigenvector[2][0] = - akEigenvector[2][0];
akEigenvector[2][1] = - akEigenvector[2][1];
akEigenvector[2][2] = - akEigenvector[2][2];
}
}
//----------------------------------------------------------------------------
void MgcMatrix3::TensorProduct (const MgcVector3& rkU, const MgcVector3& rkV,
MgcMatrix3& rkProduct)
{
for (int iRow = 0; iRow < 3; iRow++)
{
for (int iCol = 0; iCol < 3; iCol++)
rkProduct[iRow][iCol] = rkU[iRow]*rkV[iCol];
}
}
//----------------------------------------------------------------------------
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -