📄 mgclinearsystem.h
字号:
// Magic Software, Inc.
// http://www.magic-software.com
// Copyright (c) 2000, All Rights Reserved
//
// Source code from Magic Software is supplied under the terms of a license
// agreement and may not be copied or disclosed except in accordance with the
// terms of that agreement. The various license agreements may be found at
// the Magic Software web site. This file is subject to the license
//
// FREE SOURCE CODE
// http://www.magic-software.com/License/free.pdf
#ifndef MGCLINEARSYSTEM_H
#define MGCLINEARSYSTEM_H
#include "MgcMath.h"
class MgcLinearSystem
{
public:
MgcLinearSystem () { /**/ }
// 2x2 and 3x3 systems (avoids overhead of Gaussian elimination)
static MgcReal& Tolerance ();
static bool Solve2 (const MgcReal aafA[2][2], const MgcReal afB[2],
MgcReal afX[2]);
static bool Solve3 (const MgcReal aafA[3][3], const MgcReal afB[3],
MgcReal afX[3]);
// convenience for allocation, memory is zeroed out
static MgcReal** NewMatrix (int iSize);
static void DeleteMatrix (int iSize, MgcReal** aafA);
static MgcReal* NewVector (int iSize);
static void DeleteVector (int iSize, MgcReal* afB);
static bool Inverse (int iSize, MgcReal** aafA);
// Input:
// A[iSize][iSize], entries are A[row][col]
// Output:
// return value is TRUE if successful, FALSE if pivoting failed
// A[iSize][iSize], inverse matrix
static bool Solve (int iSize, MgcReal** aafA, MgcReal* afB);
// Input:
// A[iSize][iSize] coefficient matrix, entries are A[row][col]
// B[iSize] vector, entries are B[row]
// Output:
// return value is TRUE if successful, FALSE if pivoting failed
// A[iSize][iSize] is inverse matrix
// B[iSize] is solution x to Ax = B
static bool SolveTri (int iSize, MgcReal* afA, MgcReal* afB, MgcReal* afC,
MgcReal* afR, MgcReal* afU);
// Input:
// Matrix is tridiagonal.
// Lower diagonal A[iSize-1]
// Main diagonal B[iSize]
// Upper diagonal C[iSize-1]
// Right-hand side R[iSize]
// Output:
// return value is TRUE if successful, FALSE if pivoting failed
// U[iSize] is solution
static bool SolveConstTri (int iSize, MgcReal fA, MgcReal fB, MgcReal fC,
MgcReal* afR, MgcReal* afU);
// Input:
// Matrix is tridiagonal.
// Lower diagonal is constant, A
// Main diagonal is constant, B
// Upper diagonal is constant, C
// Right-hand side Rr[iSize]
// Output:
// return value is TRUE if successful, FALSE if pivoting failed
// U[iSize] is solution
static bool SolveSymmetric (int iSize, MgcReal** aafA, MgcReal* afB);
// Input:
// A[iSize][iSize] symmetric matrix, entries are A[row][col]
// B[iSize] vector, entries are B[row]
// Output:
// return value is TRUE if successful, FALSE if (nearly) singular
// decomposition A = L D L^t (diagonal terms of L are all 1)
// A[i][i] = entries of diagonal D
// A[i][j] for i > j = lower triangular part of L
// B[iSize] is solution to x to Ax = B
static bool SymmetricInverse (int iSize, MgcReal** aafA,
MgcReal** aafAInv);
// Input:
// A[iSize][iSize], entries are A[row][col]
// Output:
// return value is TRUE if successful, FALSE if algorithm failed
// AInv[iSize][iSize], inverse matrix
protected:
// tolerance for 2x2 and 3x3 system solving
static MgcReal ms_fTolerance;
};
//----------------------------------------------------------------------------
inline MgcReal& MgcLinearSystem::Tolerance ()
{
return ms_fTolerance;
}
//----------------------------------------------------------------------------
#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -