📄 mgcminimize1d.cpp
字号:
// Magic Software, Inc.
// http://www.magic-software.com
// Copyright (c) 2000, All Rights Reserved
//
// Source code from Magic Software is supplied under the terms of a license
// agreement and may not be copied or disclosed except in accordance with the
// terms of that agreement. The various license agreements may be found at
// the Magic Software web site. This file is subject to the license
//
// FREE SOURCE CODE
// http://www.magic-software.com/License/free.pdf
#include "MgcMinimize1D.h"
#include "MgcRTLib.h"
//----------------------------------------------------------------------------
MgcMinimize1D::MgcMinimize1D (Function oF, unsigned int uiMaxLevel,
unsigned int uiMaxBracket, void* pvUserData)
{
assert( m_oF );
m_oF = oF;
m_uiMaxLevel = uiMaxLevel;
m_uiMaxBracket = uiMaxBracket;
m_pvUserData = pvUserData;
}
//----------------------------------------------------------------------------
void MgcMinimize1D::GetMinimum (MgcReal fT0, MgcReal fT1, MgcReal fTInitial,
MgcReal& rfTMin, MgcReal& rfFMin)
{
assert( fT0 <= fTInitial && fTInitial <= fT1 );
m_fTMin = MgcMath::INFINITY;
m_fFMin = MgcMath::INFINITY;
MgcReal fF0 = m_oF(fT0,m_pvUserData);
MgcReal fFInitial = m_oF(fTInitial,m_pvUserData);
MgcReal fF1 = m_oF(fT1,m_pvUserData);
GetMinimum(fT0,fF0,fTInitial,fFInitial,fT1,fF1,m_uiMaxLevel);
rfTMin = m_fTMin;
rfFMin = m_fFMin;
}
//----------------------------------------------------------------------------
void MgcMinimize1D::GetMinimum (MgcReal fT0, MgcReal fF0, MgcReal fTm,
MgcReal fFm, MgcReal fT1, MgcReal fF1, unsigned int uiLevel)
{
if ( fF0 < m_fFMin )
{
m_fTMin = fT0;
m_fFMin = fF0;
}
if ( fFm < m_fFMin )
{
m_fTMin = fTm;
m_fFMin = fFm;
}
if ( fF1 < m_fFMin )
{
m_fTMin = fT1;
m_fFMin = fF1;
}
if ( uiLevel-- == 0 )
return;
if ( (fT1 - fTm)*(fF0 - fFm) > (fTm - fT0)*(fFm - fF1) )
{
// quadratic fit has positive second derivative at midpoint
if ( fF1 > fF0 )
{
if ( fFm >= fF0 )
{
// increasing, repeat on [t0,tm]
GetMinimum(fT0,fF0,fTm,fFm,uiLevel);
}
else
{
// not monotonic, have a bracket
GetBracketedMinimum(fT0,fF0,fTm,fFm,fT1,fF1,uiLevel);
}
}
else if ( fF1 < fF0 )
{
if ( fFm >= fF1 )
{
// decreasing, repeat on [tm,t1]
GetMinimum(fTm,fFm,fT1,fF1,uiLevel);
}
else
{
// not monotonic, have a bracket
GetBracketedMinimum(fT0,fF0,fTm,fFm,fT1,fF1,uiLevel);
}
}
else
{
// constant, repeat on [t0,tm] and [tm,t1]
GetMinimum(fT0,fF0,fTm,fFm,uiLevel);
GetMinimum(fTm,fFm,fT1,fF1,uiLevel);
}
}
else
{
// quadratic fit has nonpositive second derivative at midpoint
if ( fF1 > fF0 )
{
// repeat on [t0,tm]
GetMinimum(fT0,fF0,fTm,fFm,uiLevel);
}
else if ( fF1 < fF0 )
{
// repeat on [tm,t1]
GetMinimum(fTm,fFm,fT1,fF1,uiLevel);
}
else
{
// repeat on [t0,tm] and [tm,t1]
GetMinimum(fT0,fF0,fTm,fFm,uiLevel);
GetMinimum(fTm,fFm,fT1,fF1,uiLevel);
}
}
}
//----------------------------------------------------------------------------
void MgcMinimize1D::GetMinimum (MgcReal fT0, MgcReal fF0, MgcReal fT1,
MgcReal fF1, unsigned int uiLevel)
{
if ( fF0 < m_fFMin )
{
m_fTMin = fT0;
m_fFMin = fF0;
}
if ( fF1 < m_fFMin )
{
m_fTMin = fT1;
m_fFMin = fF1;
}
if ( uiLevel-- == 0 )
return;
MgcReal fTm = 0.5*(fT0+fT1);
MgcReal fFm = m_oF(fTm,m_pvUserData);
if ( fF0 - 2.0*fFm + fF1 > 0.0 )
{
// quadratic fit has positive second derivative at midpoint
if ( fF1 > fF0 )
{
if ( fFm >= fF0 )
{
// increasing, repeat on [t0,tm]
GetMinimum(fT0,fF0,fTm,fFm,uiLevel);
}
else
{
// not monotonic, have a bracket
GetBracketedMinimum(fT0,fF0,fTm,fFm,fT1,fF1,uiLevel);
}
}
else if ( fF1 < fF0 )
{
if ( fFm >= fF1 )
{
// decreasing, repeat on [tm,t1]
GetMinimum(fTm,fFm,fT1,fF1,uiLevel);
}
else
{
// not monotonic, have a bracket
GetBracketedMinimum(fT0,fF0,fTm,fFm,fT1,fF1,uiLevel);
}
}
else
{
// constant, repeat on [t0,tm] and [tm,t1]
GetMinimum(fT0,fF0,fTm,fFm,uiLevel);
GetMinimum(fTm,fFm,fT1,fF1,uiLevel);
}
}
else
{
// quadratic fit has nonpositive second derivative at midpoint
if ( fF1 > fF0 )
{
// repeat on [t0,tm]
GetMinimum(fT0,fF0,fTm,fFm,uiLevel);
}
else if ( fF1 < fF0 )
{
// repeat on [tm,t1]
GetMinimum(fTm,fFm,fT1,fF1,uiLevel);
}
else
{
// repeat on [t0,tm] and [tm,t1]
GetMinimum(fT0,fF0,fTm,fFm,uiLevel);
GetMinimum(fTm,fFm,fT1,fF1,uiLevel);
}
}
}
//----------------------------------------------------------------------------
void MgcMinimize1D::GetBracketedMinimum (MgcReal fT0, MgcReal fF0,
MgcReal fTm, MgcReal fFm, MgcReal fT1, MgcReal fF1, unsigned int uiLevel)
{
for (unsigned int uiI = 0; uiI < m_uiMaxBracket; uiI++)
{
// update minimum value
if ( fFm < m_fFMin )
{
m_fTMin = fTm;
m_fFMin = fFm;
}
// test for convergence
const MgcReal fEps = 1e-08, fTol = 1e-04;
if ( MgcMath::Abs(fT1-fT0) <= 2.0*fTol*MgcMath::Abs(fTm) + fEps )
break;
// compute vertex of interpolating parabola
MgcReal fDT0 = fT0 - fTm, fDT1 = fT1 - fTm;
MgcReal fDF0 = fF0 - fFm, fDF1 = fF1 - fFm;
MgcReal fTmp0 = fDT0*fDF1, fTmp1 = fDT1*fDF0;
MgcReal fDenom = fTmp1 - fTmp0;
if ( MgcMath::Abs(fDenom) < fEps )
return;
MgcReal fTv = fTm + 0.5*(fDT1*fTmp1-fDT0*fTmp0)/fDenom;
assert( fT0 <= fTv && fTv <= fT1 );
MgcReal fFv = m_oF(fTv,m_pvUserData);
if ( fTv < fTm )
{
if ( fFv < fFm )
{
fT1 = fTm;
fF1 = fFm;
fTm = fTv;
fFm = fFv;
}
else
{
fT0 = fTv;
fF0 = fFv;
}
}
else if ( fTv > fTm )
{
if ( fFv < fFm )
{
fT0 = fTm;
fF0 = fFm;
fTm = fTv;
fFm = fFv;
}
else
{
fT1 = fTv;
fF1 = fFv;
}
}
else
{
// vertex of parabola is already at middle sample point
GetMinimum(fT0,fF0,fTm,fFm,uiLevel);
GetMinimum(fTm,fFm,fT1,fF1,uiLevel);
}
}
}
//----------------------------------------------------------------------------
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -