📄 mgcintrlin3sphr.cpp
字号:
// Magic Software, Inc.
// http://www.magic-software.com
// Copyright (c) 2000, All Rights Reserved
//
// Source code from Magic Software is supplied under the terms of a license
// agreement and may not be copied or disclosed except in accordance with the
// terms of that agreement. The various license agreements may be found at
// the Magic Software web site. This file is subject to the license
//
// FREE SOURCE CODE
// http://www.magic-software.com/License/free.pdf
#include "MgcDistVec3Lin3.h"
#include "MgcIntrLin3Sphr.h"
//----------------------------------------------------------------------------
bool MgcTestIntersection (const MgcSegment3& rkSegment,
const MgcSphere& rkSphere)
{
MgcReal fSqrDist = MgcSqrDistance(rkSphere.Center(),rkSegment);
return fSqrDist <= rkSphere.Radius();
}
//----------------------------------------------------------------------------
bool MgcTestIntersection (const MgcRay3& rkRay, const MgcSphere& rkSphere)
{
MgcReal fSqrDist = MgcSqrDistance(rkSphere.Center(),rkRay);
return fSqrDist <= rkSphere.Radius();
}
//----------------------------------------------------------------------------
bool MgcTestIntersection (const MgcLine3& rkLine, const MgcSphere& rkSphere)
{
MgcReal fSqrDist = MgcSqrDistance(rkSphere.Center(),rkLine);
return fSqrDist <= rkSphere.Radius();
}
//----------------------------------------------------------------------------
bool MgcFindIntersection (const MgcSegment3& rkSegment,
const MgcSphere& rkSphere, int& riQuantity, MgcVector3 akPoint[2])
{
// set up quadratic Q(t) = a*t^2 + 2*b*t + c
MgcVector3 kDiff = rkSegment.Origin() - rkSphere.Center();
MgcReal fA = rkSegment.Direction().SquaredLength();
MgcReal fB = kDiff.Dot(rkSegment.Direction());
MgcReal fC = kDiff.SquaredLength() -
rkSphere.Radius()*rkSphere.Radius();
// no intersection if Q(t) has no real roots
MgcReal afT[2];
MgcReal fDiscr = fB*fB - fA*fC;
if ( fDiscr < 0.0 )
{
riQuantity = 0;
}
else if ( fDiscr > 0.0 )
{
MgcReal fRoot = MgcMath::Sqrt(fDiscr);
MgcReal fInvA = 1.0/fA;
afT[0] = (-fB - fRoot)*fInvA;
afT[1] = (-fB + fRoot)*fInvA;
if ( afT[0] > 1.0 )
riQuantity = 0;
else if ( afT[0] >= 0.0 )
riQuantity = ( afT[1] > 1.0 ? 1 : 2 );
else if ( afT[1] >= 0.0 )
riQuantity = 1;
else
riQuantity = 0;
}
else
{
afT[0] = -fB/fA;
riQuantity = ( 0.0 <= afT[0] && afT[0] <= 1.0 ? 1 : 0 );
}
for (int i = 0; i < riQuantity; i++)
akPoint[i] = rkSegment.Origin() + afT[i]*rkSegment.Direction();
return riQuantity > 0;
}
//----------------------------------------------------------------------------
bool MgcFindIntersection (const MgcRay3& rkRay, const MgcSphere& rkSphere,
int& riQuantity, MgcVector3 akPoint[2])
{
// set up quadratic Q(t) = a*t^2 + 2*b*t + c
MgcVector3 kDiff = rkRay.Origin() - rkSphere.Center();
MgcReal fA = rkRay.Direction().SquaredLength();
MgcReal fB = kDiff.Dot(rkRay.Direction());
MgcReal fC = kDiff.SquaredLength() -
rkSphere.Radius()*rkSphere.Radius();
MgcReal afT[2];
MgcReal fDiscr = fB*fB - fA*fC;
if ( fDiscr < 0.0 )
{
riQuantity = 0;
}
else if ( fDiscr > 0.0 )
{
MgcReal fRoot = MgcMath::Sqrt(fDiscr);
MgcReal fInvA = 1.0/fA;
afT[0] = (-fB - fRoot)*fInvA;
afT[1] = (-fB + fRoot)*fInvA;
if ( afT[0] >= 0.0 )
riQuantity = 2;
else if ( afT[1] >= 0.0 )
riQuantity = 1;
else
riQuantity = 0;
}
else
{
afT[0] = -fB/fA;
riQuantity = ( afT[0] >= 0.0 ? 1 : 0 );
}
for (int i = 0; i < riQuantity; i++)
akPoint[i] = rkRay.Origin() + afT[i]*rkRay.Direction();
return riQuantity > 0;
}
//----------------------------------------------------------------------------
bool MgcFindIntersection (const MgcLine3& rkLine,
const MgcSphere& rkSphere, int& riQuantity, MgcVector3 akPoint[2])
{
// set up quadratic Q(t) = a*t^2 + 2*b*t + c
MgcVector3 kDiff = rkLine.Origin() - rkSphere.Center();
MgcReal fA = rkLine.Direction().SquaredLength();
MgcReal fB = kDiff.Dot(rkLine.Direction());
MgcReal fC = kDiff.SquaredLength() -
rkSphere.Radius()*rkSphere.Radius();
MgcReal afT[2];
MgcReal fDiscr = fB*fB - fA*fC;
if ( fDiscr < 0.0 )
{
riQuantity = 0;
}
else if ( fDiscr > 0.0 )
{
MgcReal fRoot = MgcMath::Sqrt(fDiscr);
MgcReal fInvA = 1.0/fA;
riQuantity = 2;
afT[0] = (-fB - fRoot)*fInvA;
afT[1] = (-fB + fRoot)*fInvA;
}
else
{
riQuantity = 1;
afT[0] = -fB/fA;
}
for (int i = 0; i < riQuantity; i++)
akPoint[i] = rkLine.Origin() + afT[i]*rkLine.Direction();
return riQuantity > 0;
}
//----------------------------------------------------------------------------
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -