📄 mgcparaboloidfit.cpp
字号:
// Magic Software, Inc.
// http://www.magic-software.com
// Copyright (c) 2000, All Rights Reserved
//
// Source code from Magic Software is supplied under the terms of a license
// agreement and may not be copied or disclosed except in accordance with the
// terms of that agreement. The various license agreements may be found at
// the Magic Software web site. This file is subject to the license
//
// FREE SOURCE CODE
// http://www.magic-software.com/License/free.pdf
// Fitting a Paraboloid Uusing Least Squares
//
// Given a set of samples (x_i,y_i,z_i) for 0 <= i < N and assuming
// that the true values lie on a paraboloid
// z = p0*x*x + p1*x*y + p2*y*y + p3*x + p4*y + p5 = Dot(P,Q(x,y))
// where P = (p0,p1,p2,p3,p4,p5) and Q(x,y) = (x*x,x*y,y*y,x,y,1),
// select P to minimize the sum of squared errors
// E(P) = sum_{i=0}^{N-1} [Dot(P,Q_i)-z_i]^2
// where Q_i = Q(x_i,y_i).
//
// The minimum occurs when the gradient of E is the zero vector,
// grad(E) = 2 sum_{i=0}^{N-1} [Dot(P,Q_i)-z_i] Q_i = 0
// Some algebra converts this to a system of 6 equations in 6 unknowns:
// [(sum_{i=0}^{N-1} Q_i Q_i^t] P = sum_{i=0}^{N-1} z_i Q_i
// The product Q_i Q_i^t is a product of the 6x1 matrix Q_i with the
// 1x6 matrix Q_i^t, the result being a 6x6 matrix.
//
// Define the 6x6 symmetric matrix A = sum_{i=0}^{N-1} Q_i Q_i^t and the 6x1
// vector B = sum_{i=0}^{N-1} z_i Q_i. The choice for P is the solution to
// the linear system of equations A*P = B. The entries of A and B indicate
// summations over the appropriate product of variables. For example,
// s(x^3 y) = sum_{i=0}^{N-1} x_i^3 y_i.
//
// +- -++ + +- -+
// | s(x^4) s(x^3 y) s(x^2 y^2) s(x^3) s(x^2 y) s(x^2) ||p0| |s(z x^2)|
// | s(x^2 y^2) s(x y^3) s(x^2 y) s(x y^2) s(x y) ||p1| |s(z x y)|
// | s(y^4) s(x y^2) s(y^3) s(y^2) ||p2| = |s(z y^2)|
// | s(x^2) s(x y) s(x) ||p3| |s(z x) |
// | s(y^2) s(y) ||p4| |s(z y) |
// | s(1) ||p5| |s(z) |
// +- -++ + +- -+
#include "MgcLinearSystem.h"
#include "MgcParaboloidFit.h"
#include "MgcRTLib.h"
//----------------------------------------------------------------------------
bool MgcParaboloidFit (int iQuantity, const MgcVector3* akPoint,
MgcReal afCoeff[6])
{
// allocate linear system (A and b are zeroed initially)
MgcLinearSystem kSystem;
MgcReal** A = kSystem.NewMatrix(6);
memset(afCoeff,0,6*sizeof(MgcReal));
for (int i = 0; i < iQuantity; i++)
{
MgcReal fX2 = akPoint[i].x*akPoint[i].x;
MgcReal fXY = akPoint[i].x*akPoint[i].y;
MgcReal fY2 = akPoint[i].y*akPoint[i].y;
MgcReal fZX = akPoint[i].z*akPoint[i].x;
MgcReal fZY = akPoint[i].z*akPoint[i].y;
MgcReal fX3 = akPoint[i].x*fX2;
MgcReal fX2Y = fX2*akPoint[i].y;
MgcReal fXY2 = akPoint[i].x*fY2;
MgcReal fY3 = akPoint[i].y*fY2;
MgcReal fZX2 = akPoint[i].z*fX2;
MgcReal fZXY = akPoint[i].z*fXY;
MgcReal fZY2 = akPoint[i].z*fY2;
MgcReal fX4 = fX2*fX2;
MgcReal fX3Y = fX3*akPoint[i].y;
MgcReal fX2Y2 = fX2*fY2;
MgcReal fXY3 = akPoint[i].x*fY3;
MgcReal fY4 = fY2*fY2;
A[0][0] += fX4;
A[0][1] += fX3Y;
A[0][2] += fX2Y2;
A[0][3] += fX3;
A[0][4] += fX2Y;
A[0][5] += fX2;
A[1][2] += fXY3;
A[1][4] += fXY2;
A[1][5] += fXY;
A[2][2] += fY4;
A[2][4] += fY3;
A[2][5] += fY2;
A[3][3] += fX2;
A[3][5] += akPoint[i].x;
A[4][5] += akPoint[i].y;
afCoeff[0] += fZX2;
afCoeff[1] += fZXY;
afCoeff[2] += fZY2;
afCoeff[3] += fZX;
afCoeff[4] += fZY;
afCoeff[5] += akPoint[i].z;
}
A[1][0] = A[0][1];
A[1][1] = A[0][2];
A[1][3] = A[0][4];
A[2][0] = A[0][2];
A[2][1] = A[1][2];
A[2][3] = A[1][4];
A[3][0] = A[0][3];
A[3][1] = A[1][3];
A[3][2] = A[2][3];
A[3][4] = A[1][5];
A[4][0] = A[0][4];
A[4][1] = A[1][4];
A[4][2] = A[2][4];
A[4][3] = A[3][4];
A[4][4] = A[2][5];
A[5][0] = A[0][5];
A[5][1] = A[1][5];
A[5][2] = A[2][5];
A[5][3] = A[3][5];
A[5][4] = A[4][5];
A[5][5] = iQuantity;
bool bResult = kSystem.SolveSymmetric(6,A,afCoeff);
kSystem.DeleteMatrix(6,A);
return bResult;
}
//----------------------------------------------------------------------------
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -