⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mgcgausspointsfit.cpp

📁 3D Game Engine Design Source Code非常棒
💻 CPP
字号:
// Magic Software, Inc.
// http://www.magic-software.com
// Copyright (c) 2000, All Rights Reserved
//
// Source code from Magic Software is supplied under the terms of a license
// agreement and may not be copied or disclosed except in accordance with the
// terms of that agreement.  The various license agreements may be found at
// the Magic Software web site.  This file is subject to the license
//
// FREE SOURCE CODE
// http://www.magic-software.com/License/free.pdf

#include "MgcEigen.h"
#include "MgcGaussPointsFit.h"

//----------------------------------------------------------------------------
void MgcGaussPointsFit (int iQuantity, const MgcVector2* akPoint,
    MgcVector2& rkCenter, MgcVector2 akAxis[2], MgcReal afExtent[2])
{
    // compute mean of points
    rkCenter = akPoint[0];
    int i;
    for (i = 1; i < iQuantity; i++)
        rkCenter += akPoint[i];
    MgcReal fInvQuantity = 1.0/iQuantity;
    rkCenter *= fInvQuantity;

    // compute covariances of points
    MgcReal fSumXX = 0.0, fSumXY = 0.0, fSumYY = 0.0;
    for (i = 0; i < iQuantity; i++)
    {
        MgcVector2 kDiff = akPoint[i] - rkCenter;
        fSumXX += kDiff.x*kDiff.x;
        fSumXY += kDiff.x*kDiff.y;
        fSumYY += kDiff.y*kDiff.y;
    }
    fSumXX *= fInvQuantity;
    fSumXY *= fInvQuantity;
    fSumYY *= fInvQuantity;

    // solve eigensystem of covariance matrix
    MgcEigen kES(2);
    kES.Matrix(0,0) = fSumXX;
    kES.Matrix(0,1) = fSumXY;
    kES.Matrix(1,0) = fSumXY;
    kES.Matrix(1,1) = fSumYY;
    kES.IncrSortEigenStuff2();

    akAxis[0].x = kES.GetEigenvector(0,0);
    akAxis[0].y = kES.GetEigenvector(1,0);
    akAxis[1].x = kES.GetEigenvector(0,1);
    akAxis[1].y = kES.GetEigenvector(1,1);

    afExtent[0] = kES.GetEigenvalue(0);
    afExtent[1] = kES.GetEigenvalue(1);
}
//----------------------------------------------------------------------------
void MgcGaussPointsFit (int iQuantity, const MgcVector3* akPoint,
    MgcVector3& rkCenter, MgcVector3 akAxis[3], MgcReal afExtent[3])
{
    // compute mean of points
    rkCenter = akPoint[0];
    int i;
    for (i = 1; i < iQuantity; i++)
        rkCenter += akPoint[i];
    MgcReal fInvQuantity = 1.0/iQuantity;
    rkCenter *= fInvQuantity;

    // compute covariances of points
    MgcReal fSumXX = 0.0, fSumXY = 0.0, fSumXZ = 0.0;
    MgcReal fSumYY = 0.0, fSumYZ = 0.0, fSumZZ = 0.0;
    for (i = 0; i < iQuantity; i++)
    {
        MgcVector3 kDiff = akPoint[i] - rkCenter;
        fSumXX += kDiff.x*kDiff.x;
        fSumXY += kDiff.x*kDiff.y;
        fSumXZ += kDiff.x*kDiff.z;
        fSumYY += kDiff.y*kDiff.y;
        fSumYZ += kDiff.y*kDiff.z;
        fSumZZ += kDiff.z*kDiff.z;
    }
    fSumXX *= fInvQuantity;
    fSumXY *= fInvQuantity;
    fSumXZ *= fInvQuantity;
    fSumYY *= fInvQuantity;
    fSumYZ *= fInvQuantity;
    fSumZZ *= fInvQuantity;

    // compute eigenvectors for covariance matrix
    MgcEigen kES(3);
    kES.Matrix(0,0) = fSumXX;
    kES.Matrix(0,1) = fSumXY;
    kES.Matrix(0,2) = fSumXZ;
    kES.Matrix(1,0) = fSumXY;
    kES.Matrix(1,1) = fSumYY;
    kES.Matrix(1,2) = fSumYZ;
    kES.Matrix(2,0) = fSumXZ;
    kES.Matrix(2,1) = fSumYZ;
    kES.Matrix(2,2) = fSumZZ;
    kES.IncrSortEigenStuff3();

    akAxis[0].x = kES.GetEigenvector(0,0);
    akAxis[0].y = kES.GetEigenvector(1,0);
    akAxis[0].z = kES.GetEigenvector(2,0);
    akAxis[1].x = kES.GetEigenvector(0,1);
    akAxis[1].y = kES.GetEigenvector(1,1);
    akAxis[1].z = kES.GetEigenvector(2,1);
    akAxis[2].x = kES.GetEigenvector(0,2);
    akAxis[2].y = kES.GetEigenvector(1,2);
    akAxis[2].z = kES.GetEigenvector(2,2);

    afExtent[0] = kES.GetEigenvalue(0);
    afExtent[1] = kES.GetEigenvalue(1);
    afExtent[2] = kES.GetEigenvalue(2);
}
//----------------------------------------------------------------------------
bool MgcGaussPointsFit (int iQuantity, const MgcVector2* akPoint,
    const bool* abValid, MgcVector2& rkCenter, MgcVector2 akAxis[2],
    MgcReal afExtent[2])
{
    // compute mean of points
    rkCenter = MgcVector2::ZERO;
    int i, iValidQuantity = 0;
    for (i = 0; i < iQuantity; i++)
    {
        if ( abValid[i] )
        {
            rkCenter += akPoint[i];
            iValidQuantity++;
        }
    }
    if ( iValidQuantity == 0 )
        return false;

    MgcReal fInvQuantity = 1.0/iValidQuantity;
    rkCenter *= fInvQuantity;

    // compute covariances of points
    MgcReal fSumXX = 0.0, fSumXY = 0.0, fSumYY = 0.0;
    for (i = 0; i < iQuantity; i++)
    {
        if ( abValid[i] )
        {
            MgcVector2 kDiff = akPoint[i] - rkCenter;
            fSumXX += kDiff.x*kDiff.x;
            fSumXY += kDiff.x*kDiff.y;
            fSumYY += kDiff.y*kDiff.y;
        }
    }
    fSumXX *= fInvQuantity;
    fSumXY *= fInvQuantity;
    fSumYY *= fInvQuantity;

    // solve eigensystem of covariance matrix
    MgcEigen kES(2);
    kES.Matrix(0,0) = fSumXX;
    kES.Matrix(0,1) = fSumXY;
    kES.Matrix(1,0) = fSumXY;
    kES.Matrix(1,1) = fSumYY;
    kES.IncrSortEigenStuff2();

    akAxis[0].x = kES.GetEigenvector(0,0);
    akAxis[0].y = kES.GetEigenvector(1,0);
    akAxis[1].x = kES.GetEigenvector(0,1);
    akAxis[1].y = kES.GetEigenvector(1,1);

    afExtent[0] = kES.GetEigenvalue(0);
    afExtent[1] = kES.GetEigenvalue(1);

    return true;
}
//----------------------------------------------------------------------------
bool MgcGaussPointsFit (int iQuantity, const MgcVector3* akPoint,
    const bool* abValid, MgcVector3& rkCenter, MgcVector3 akAxis[3],
    MgcReal afExtent[3])
{
    // compute mean of points
    rkCenter = MgcVector3::ZERO;
    int i, iValidQuantity = 0;
    for (i = 0; i < iQuantity; i++)
    {
        if ( abValid[i] )
        {
            rkCenter += akPoint[i];
            iValidQuantity++;
        }
    }
    if ( iValidQuantity == 0 )
        return false;

    MgcReal fInvQuantity = 1.0/iValidQuantity;
    rkCenter *= fInvQuantity;

    // compute covariances of points
    MgcReal fSumXX = 0.0, fSumXY = 0.0, fSumXZ = 0.0;
    MgcReal fSumYY = 0.0, fSumYZ = 0.0, fSumZZ = 0.0;
    for (i = 0; i < iQuantity; i++)
    {
        if ( abValid[i] )
        {
            MgcVector3 kDiff = akPoint[i] - rkCenter;
            fSumXX += kDiff.x*kDiff.x;
            fSumXY += kDiff.x*kDiff.y;
            fSumXZ += kDiff.x*kDiff.z;
            fSumYY += kDiff.y*kDiff.y;
            fSumYZ += kDiff.y*kDiff.z;
            fSumZZ += kDiff.z*kDiff.z;
        }
    }
    fSumXX *= fInvQuantity;
    fSumXY *= fInvQuantity;
    fSumXZ *= fInvQuantity;
    fSumYY *= fInvQuantity;
    fSumYZ *= fInvQuantity;
    fSumZZ *= fInvQuantity;

    // compute eigenvectors for covariance matrix
    MgcEigen kES(3);
    kES.Matrix(0,0) = fSumXX;
    kES.Matrix(0,1) = fSumXY;
    kES.Matrix(0,2) = fSumXZ;
    kES.Matrix(1,0) = fSumXY;
    kES.Matrix(1,1) = fSumYY;
    kES.Matrix(1,2) = fSumYZ;
    kES.Matrix(2,0) = fSumXZ;
    kES.Matrix(2,1) = fSumYZ;
    kES.Matrix(2,2) = fSumZZ;
    kES.IncrSortEigenStuff3();

    akAxis[0].x = kES.GetEigenvector(0,0);
    akAxis[0].y = kES.GetEigenvector(1,0);
    akAxis[0].z = kES.GetEigenvector(2,0);
    akAxis[1].x = kES.GetEigenvector(0,1);
    akAxis[1].y = kES.GetEigenvector(1,1);
    akAxis[1].z = kES.GetEigenvector(2,1);
    akAxis[2].x = kES.GetEigenvector(0,2);
    akAxis[2].y = kES.GetEigenvector(1,2);
    akAxis[2].z = kES.GetEigenvector(2,2);

    afExtent[0] = kES.GetEigenvalue(0);
    afExtent[1] = kES.GetEigenvalue(1);
    afExtent[2] = kES.GetEigenvalue(2);

    return true;
}
//----------------------------------------------------------------------------

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -