📄 mgccirclescribe.cpp
字号:
// Magic Software, Inc.
// http://www.magic-software.com
// Copyright (c) 2000, All Rights Reserved
//
// Source code from Magic Software is supplied under the terms of a license
// agreement and may not be copied or disclosed except in accordance with the
// terms of that agreement. The various license agreements may be found at
// the Magic Software web site. This file is subject to the license
//
// FREE SOURCE CODE
// http://www.magic-software.com/License/free.pdf
#include "MgcCircleScribe.h"
#include "MgcLinearSystem.h"
static const MgcReal gs_fTolerance = 1e-06;
//----------------------------------------------------------------------------
bool MgcCircumscribe (const MgcVector2& rkV0, const MgcVector2& rkV1,
const MgcVector2& rkV2, MgcCircle2& rkCircle)
{
MgcVector2 kE10 = rkV1 - rkV0;
MgcVector2 kE20 = rkV2 - rkV0;
MgcReal aafA[2][2] =
{
kE10.x, kE10.y,
kE20.x, kE20.y
};
MgcReal afB[2] =
{
0.5*kE10.SquaredLength(),
0.5*kE20.SquaredLength()
};
MgcLinearSystem kSystem;
MgcVector2 kSol;
if ( kSystem.Solve2(aafA,afB,(MgcReal*)&kSol) )
{
rkCircle.Center() = rkV0 + kSol;
rkCircle.Radius() = kSol.Length();
return true;
}
else
{
return false;
}
}
//----------------------------------------------------------------------------
bool MgcCircumscribe (const MgcVector3& rkV0, const MgcVector3& rkV1,
const MgcVector3& rkV2, MgcCircle3& rkCircle)
{
MgcVector3 kE02 = rkV0 - rkV2;
MgcVector3 kE12 = rkV1 - rkV2;
MgcReal fE02E02 = kE02.Dot(kE02);
MgcReal fE02E12 = kE02.Dot(kE12);
MgcReal fE12E12 = kE12.Dot(kE12);
MgcReal fDet = fE02E02*fE12E12 - fE02E12*fE02E12;
if ( MgcMath::Abs(fDet) < gs_fTolerance )
return false;
MgcReal fHalfInvDet = 0.5/fDet;
MgcReal fU0 = fHalfInvDet*fE12E12*(fE02E02 - fE02E12);
MgcReal fU1 = fHalfInvDet*fE02E02*(fE12E12 - fE02E12);
MgcReal fU2 = 1.0-fU0-fU1;
MgcVector3 kTmp = fU0*kE02 + fU1*kE12;
rkCircle.Center() = rkV2 + kTmp;
rkCircle.Radius() = kTmp.Length();
rkCircle.N() = kE02.UnitCross(kE12);
MgcVector3& rkN = rkCircle.N();
MgcVector3& rkU = rkCircle.U();
if ( MgcMath::Abs(rkN.x) >= MgcMath::Abs(rkN.y)
&& MgcMath::Abs(rkN.x) >= MgcMath::Abs(rkN.z) )
{
rkU.x = -rkN.y;
rkU.y = rkN.x;
rkU.z = 0.0;
}
else
{
rkU.x = 0.0;
rkU.y = rkN.z;
rkU.z = -rkN.y;
}
rkU.Unitize();
rkCircle.V() = rkCircle.N().Cross(rkCircle.U());
return true;
}
//----------------------------------------------------------------------------
bool MgcCircumscribe (const MgcVector3& rkV0, const MgcVector3& rkV1,
const MgcVector3& rkV2, const MgcVector3& rkV3, MgcSphere& rkSphere)
{
MgcVector3 kE10 = rkV1 - rkV0;
MgcVector3 kE20 = rkV2 - rkV0;
MgcVector3 kE30 = rkV3 - rkV0;
MgcReal aafA[3][3] =
{
kE10.x, kE10.y, kE10.z,
kE20.x, kE20.y, kE20.z,
kE30.x, kE30.y, kE30.z
};
MgcReal afB[3] =
{
0.5*kE10.SquaredLength(),
0.5*kE20.SquaredLength(),
0.5*kE30.SquaredLength()
};
MgcLinearSystem kSystem;
MgcVector3 kSol;
if ( kSystem.Solve3(aafA,afB,(MgcReal*)&kSol) )
{
rkSphere.Center() = rkV0 + kSol;
rkSphere.Radius() = kSol.Length();
return true;
}
else
{
return false;
}
}
//----------------------------------------------------------------------------
bool MgcInscribe (const MgcVector2& rkV0, const MgcVector2& rkV1,
const MgcVector2& rkV2, MgcCircle2& rkCircle)
{
// edges
MgcVector2 kE0 = rkV1 - rkV0;
MgcVector2 kE1 = rkV2 - rkV1;
MgcVector2 kE2 = rkV0 - rkV2;
// normals
MgcVector2 kN0 = kE0.UnitCross();
MgcVector2 kN1 = kE1.UnitCross();
MgcVector2 kN2 = kE2.UnitCross();
MgcReal fA0 = kN1.Dot(kE0);
if ( MgcMath::Abs(fA0) < gs_fTolerance )
return false;
MgcReal fA1 = kN2.Dot(kE1);
if ( MgcMath::Abs(fA1) < gs_fTolerance )
return false;
MgcReal fA2 = kN0.Dot(kE2);
if ( MgcMath::Abs(fA2) < gs_fTolerance )
return false;
MgcReal fInvA0 = 1.0/fA0;
MgcReal fInvA1 = 1.0/fA1;
MgcReal fInvA2 = 1.0/fA2;
rkCircle.Radius() = 1.0/(fInvA0 + fInvA1 + fInvA2);
rkCircle.Center() = rkCircle.Radius()*(fInvA0*rkV0 + fInvA1*rkV1 +
fInvA2*rkV2);
return true;
}
//----------------------------------------------------------------------------
bool MgcInscribe (const MgcVector3& rkV0, const MgcVector3& rkV1,
const MgcVector3& rkV2, MgcCircle3& rkCircle)
{
// edges
MgcVector3 kE0 = rkV1 - rkV0;
MgcVector3 kE1 = rkV2 - rkV1;
MgcVector3 kE2 = rkV0 - rkV2;
// plane normal
rkCircle.N() = kE1.Cross(kE0);
// edge normals within the plane
MgcVector3 kN0 = rkCircle.N().UnitCross(kE0);
MgcVector3 kN1 = rkCircle.N().UnitCross(kE1);
MgcVector3 kN2 = rkCircle.N().UnitCross(kE2);
MgcReal fA0 = kN1.Dot(kE0);
if ( MgcMath::Abs(fA0) < gs_fTolerance )
return false;
MgcReal fA1 = kN2.Dot(kE1);
if ( MgcMath::Abs(fA1) < gs_fTolerance )
return false;
MgcReal fA2 = kN0.Dot(kE2);
if ( MgcMath::Abs(fA2) < gs_fTolerance )
return false;
MgcReal fInvA0 = 1.0/fA0;
MgcReal fInvA1 = 1.0/fA1;
MgcReal fInvA2 = 1.0/fA2;
rkCircle.Radius() = 1.0/(fInvA0 + fInvA1 + fInvA2);
rkCircle.Center() = rkCircle.Radius()*(fInvA0*rkV0 + fInvA1*rkV1 +
fInvA2*rkV2);
rkCircle.U() = kN0;
rkCircle.V() = rkCircle.N().Cross(rkCircle.U());
return true;
}
//----------------------------------------------------------------------------
bool MgcInscribe (const MgcVector3& rkV0, const MgcVector3& rkV1,
const MgcVector3& rkV2, const MgcVector3& rkV3, MgcSphere& rkSphere)
{
// edges
MgcVector3 kE10 = rkV1 - rkV0;
MgcVector3 kE20 = rkV2 - rkV0;
MgcVector3 kE30 = rkV3 - rkV0;
MgcVector3 kE21 = rkV2 - rkV1;
MgcVector3 kE31 = rkV3 - rkV1;
// normals
MgcVector3 kN0 = kE31.Cross(kE21);
MgcVector3 kN1 = kE20.Cross(kE30);
MgcVector3 kN2 = kE30.Cross(kE10);
MgcVector3 kN3 = kE10.Cross(kE20);
// unitize normals
if ( MgcMath::Abs(kN0.Unitize()) < gs_fTolerance )
return false;
if ( MgcMath::Abs(kN1.Unitize()) < gs_fTolerance )
return false;
if ( MgcMath::Abs(kN2.Unitize()) < gs_fTolerance )
return false;
if ( MgcMath::Abs(kN3.Unitize()) < gs_fTolerance )
return false;
MgcReal aafA[3][3] =
{
kN1.x-kN0.x, kN1.y-kN0.y, kN1.z-kN0.z,
kN2.x-kN0.x, kN2.y-kN0.y, kN2.z-kN0.z,
kN3.x-kN0.x, kN3.y-kN0.y, kN3.z-kN0.z
};
MgcReal afB[3] =
{
0.0,
0.0,
-kN3.Dot(kE30)
};
MgcLinearSystem kSystem;
MgcVector3 kSol;
if ( kSystem.Solve3(aafA,afB,(MgcReal*)&kSol) )
{
rkSphere.Center() = rkV3 + kSol;
rkSphere.Radius() = MgcMath::Abs(kN0.Dot(kSol));
return true;
}
else
{
return false;
}
}
//----------------------------------------------------------------------------
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -