📄 wmlcontminellipsoidcr3.h
字号:
// Magic Software, Inc.
// http://www.magic-software.com
// http://www.wild-magic.com
// Copyright (c) 2003. All Rights Reserved
//
// The Wild Magic Library (WML) source code is supplied under the terms of
// the license agreement http://www.magic-software.com/License/WildMagic.pdf
// and may not be copied or disclosed except in accordance with the terms of
// that agreement.
#ifndef WMLCONTMINELLIPSOIDCR3_H
#define WMLCONTMINELLIPSOIDCR3_H
#include "WmlMatrix3.h"
namespace Wml
{
// The ellipsoid in general form is X^t A X + B^t X + C = 0 where
// A is a positive definite 3x3 matrix, B is a 3x1 vector, C is a
// scalar, and X is a 3x1 vector. Completing the square,
// (X-U)^t A (X-U) = U^t A U - C where U = -0.5 A^{-1} B. Define
// M = A/(U^t A U - C). The ellipsoid is (X-U)^t M (X-U) = 1. Factor
// M = R^t D R where R is orthonormal and D is diagonal with positive
// diagonal terms. If Y = R(X-U), then the ellipsoid is 1 = Y^t D Y =
// d1*y1^2+d2*y2^2+d3*y3^2. For an ellipsoid (x/a)^2+(y/b)^2+(z/c)^2
// = 1, the volume is (4*pi/3)*a*b*c. For Y^t D Y = 1, the volume is
// therefore (4*pi/3)/sqrt(d1*d2*d3). Finally, note that det(M) =
// det(D) = d1*d2*d3, so the volume of the ellipsoid is
// (4*pi/3)/sqrt(det(M)).
// Compute minimal volume ellipsoid (X-C)^t R^t D R (X-C) = 1 given center
// C and orientation matrix R by finding diagonal D. Minimal volume is
// (4*pi/3)/sqrt(D[0]*D[1]*D[2]).
template <class Real>
WML_ITEM void MinEllipsoidCR3 (int iQuantity, const Vector3<Real>* akPoint,
const Vector3<Real>& rkC, const Matrix3<Real>& rkR, Real afD[3]);
}
#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -