📄 wmlintrlin3sph3.cpp
字号:
// Magic Software, Inc.
// http://www.magic-software.com
// http://www.wild-magic.com
// Copyright (c) 2003. All Rights Reserved
//
// The Wild Magic Library (WML) source code is supplied under the terms of
// the license agreement http://www.magic-software.com/License/WildMagic.pdf
// and may not be copied or disclosed except in accordance with the terms of
// that agreement.
#include "WmlIntrLin3Sph3.h"
#include "WmlIntrLin3Cap3.h"
#include "WmlDistVec3Lin3.h"
using namespace Wml;
//----------------------------------------------------------------------------
template <class Real>
bool Wml::TestIntersection (const Segment3<Real>& rkSegment,
const Sphere3<Real>& rkSphere)
{
Real fSqrDist = SqrDistance(rkSphere.Center(),rkSegment);
return fSqrDist <= rkSphere.Radius()*rkSphere.Radius();
}
//----------------------------------------------------------------------------
template <class Real>
bool Wml::TestIntersection (const Ray3<Real>& rkRay,
const Sphere3<Real>& rkSphere)
{
Real fSqrDist = SqrDistance(rkSphere.Center(),rkRay);
return fSqrDist <= rkSphere.Radius()*rkSphere.Radius();
}
//----------------------------------------------------------------------------
template <class Real>
bool Wml::TestIntersection (const Line3<Real>& rkLine,
const Sphere3<Real>& rkSphere)
{
Real fSqrDist = SqrDistance(rkSphere.Center(),rkLine);
return fSqrDist <= rkSphere.Radius()*rkSphere.Radius();
}
//----------------------------------------------------------------------------
template <class Real>
bool Wml::FindIntersection (const Segment3<Real>& rkSegment,
const Sphere3<Real>& rkSphere, int& riQuantity, Vector3<Real> akPoint[2])
{
// set up quadratic Q(t) = a*t^2 + 2*b*t + c
Vector3<Real> kDiff = rkSegment.Origin() - rkSphere.Center();
Real fA = rkSegment.Direction().SquaredLength();
Real fB = kDiff.Dot(rkSegment.Direction());
Real fC = kDiff.SquaredLength() -
rkSphere.Radius()*rkSphere.Radius();
// no intersection if Q(t) has no real roots
Real afT[2];
Real fDiscr = fB*fB - fA*fC;
if ( fDiscr < (Real)0.0 )
{
riQuantity = 0;
return false;
}
else if ( fDiscr > (Real)0.0 )
{
Real fRoot = Math<Real>::Sqrt(fDiscr);
Real fInvA = ((Real)1.0)/fA;
afT[0] = (-fB - fRoot)*fInvA;
afT[1] = (-fB + fRoot)*fInvA;
// assert: t0 < t1 since A > 0
if ( afT[0] > (Real)1.0 || afT[1] < (Real)0.0 )
{
riQuantity = 0;
return false;
}
else if ( afT[0] >= (Real)0.0 )
{
if ( afT[1] > (Real)1.0 )
{
riQuantity = 1;
akPoint[0] = rkSegment.Origin()+afT[0]*rkSegment.Direction();
return true;
}
else
{
riQuantity = 2;
akPoint[0] = rkSegment.Origin()+afT[0]*rkSegment.Direction();
akPoint[1] = rkSegment.Origin()+afT[1]*rkSegment.Direction();
return true;
}
}
else // afT[1] >= 0
{
riQuantity = 1;
akPoint[0] = rkSegment.Origin()+afT[1]*rkSegment.Direction();
return true;
}
}
else
{
afT[0] = -fB/fA;
if ( (Real)0.0 <= afT[0] && afT[0] <= (Real)1.0 )
{
riQuantity = 1;
akPoint[0] = rkSegment.Origin()+afT[0]*rkSegment.Direction();
return true;
}
else
{
riQuantity = 0;
return false;
}
}
}
//----------------------------------------------------------------------------
template <class Real>
bool Wml::FindIntersection (const Ray3<Real>& rkRay,
const Sphere3<Real>& rkSphere, int& riQuantity, Vector3<Real> akPoint[2])
{
// set up quadratic Q(t) = a*t^2 + 2*b*t + c
Vector3<Real> kDiff = rkRay.Origin() - rkSphere.Center();
Real fA = rkRay.Direction().SquaredLength();
Real fB = kDiff.Dot(rkRay.Direction());
Real fC = kDiff.SquaredLength() -
rkSphere.Radius()*rkSphere.Radius();
Real afT[2];
Real fDiscr = fB*fB - fA*fC;
if ( fDiscr < (Real)0.0 )
{
riQuantity = 0;
return false;
}
else if ( fDiscr > (Real)0.0 )
{
Real fRoot = Math<Real>::Sqrt(fDiscr);
Real fInvA = ((Real)1.0)/fA;
afT[0] = (-fB - fRoot)*fInvA;
afT[1] = (-fB + fRoot)*fInvA;
if ( afT[0] >= (Real)0.0 )
{
riQuantity = 2;
akPoint[0] = rkRay.Origin() + afT[0]*rkRay.Direction();
akPoint[1] = rkRay.Origin() + afT[1]*rkRay.Direction();
return true;
}
else if ( afT[1] >= (Real)0.0 )
{
riQuantity = 1;
akPoint[0] = rkRay.Origin() + afT[1]*rkRay.Direction();
return true;
}
else
{
riQuantity = 0;
return false;
}
}
else
{
afT[0] = -fB/fA;
if ( afT[0] >= (Real)0.0 )
{
riQuantity = 1;
akPoint[0] = rkRay.Origin() + afT[0]*rkRay.Direction();
return true;
}
else
{
riQuantity = 0;
return false;
}
}
}
//----------------------------------------------------------------------------
template <class Real>
bool Wml::FindIntersection (const Line3<Real>& rkLine,
const Sphere3<Real>& rkSphere, int& riQuantity, Vector3<Real> akPoint[2])
{
// set up quadratic Q(t) = a*t^2 + 2*b*t + c
Vector3<Real> kDiff = rkLine.Origin() - rkSphere.Center();
Real fA = rkLine.Direction().SquaredLength();
Real fB = kDiff.Dot(rkLine.Direction());
Real fC = kDiff.SquaredLength() -
rkSphere.Radius()*rkSphere.Radius();
Real afT[2];
Real fDiscr = fB*fB - fA*fC;
if ( fDiscr < (Real)0.0 )
{
riQuantity = 0;
return false;
}
else if ( fDiscr > (Real)0.0 )
{
Real fRoot = Math<Real>::Sqrt(fDiscr);
Real fInvA = ((Real)1.0)/fA;
riQuantity = 2;
afT[0] = (-fB - fRoot)*fInvA;
afT[1] = (-fB + fRoot)*fInvA;
akPoint[0] = rkLine.Origin() + afT[0]*rkLine.Direction();
akPoint[1] = rkLine.Origin() + afT[1]*rkLine.Direction();
return true;
}
else
{
riQuantity = 1;
afT[0] = -fB/fA;
akPoint[0] = rkLine.Origin() + afT[0]*rkLine.Direction();
return true;
}
}
//----------------------------------------------------------------------------
template <class Real>
bool Wml::TestIntersection (const Segment3<Real>& rkSegment,
const Vector3<Real>& rkSegVelocity, const Sphere3<Real>& rkSphere,
const Vector3<Real>& rkSphVelocity)
{
// check if initially intersecting
if ( TestIntersection(rkSegment,rkSphere) )
return true;
// Substract the segment velocity from the sphere velocity so that
// the calculations are based in the coordinate system of the segment.
// In this system, the line is of course stationary. The sphere spans
// a capsule. The intersection test reduces to a static one between
// a segment and a capsule.
Capsule3<Real> kCapsule;
kCapsule.Origin() = rkSphere.Center();
kCapsule.Direction() = rkSphVelocity - rkSegVelocity;
kCapsule.Radius() = rkSphere.Radius();
return TestIntersection(rkSegment,kCapsule);
}
//----------------------------------------------------------------------------
template <class Real>
bool Wml::FindIntersection (const Segment3<Real>& rkSegment,
const Vector3<Real>& rkSegVelocity, const Sphere3<Real>& rkSphere,
const Vector3<Real>& rkSphVelocity, Real& rfTFirst, Real /* fTMax */,
int& riQuantity, Vector3<Real> akPoint[2])
{
// TO DO. The parameter fTMax is not being used. The value rfTFirst
// should be compared to it to decide if the first time of contact is
// within the specified time interval.
// check if initially intersecting
if ( FindIntersection(rkSegment,rkSphere,riQuantity,akPoint) )
return true;
// Substract the segment velocity from the sphere velocity so that
// the calculations are based in the coordinate system of the segment.
// In this system, the line is of course stationary. The sphere spans
// a capsule, but instead we will "grow" the segment by the sphere radius
// and shrink the sphere to its center. The problem is now to detect
// the first time the moving center intersects the capsule formed by
// the line segment and sphere radius.
Capsule3<Real> kCapsule;
kCapsule.Origin() = rkSegment.Origin();
kCapsule.Direction() = rkSegment.Direction();
kCapsule.Radius() = rkSphere.Radius();
Segment3<Real> kPath;
kPath.Origin() = rkSphere.Center();
kPath.Direction() = rkSphVelocity - rkSegVelocity;
Real afT[2];
if ( !FindIntersection(kPath,kCapsule,riQuantity,akPoint,afT) )
return false;
// We now know the sphere will intersect the segment. This can happen
// either at a segment end point or at a segment interior point. We
// need to determine which.
Vector3<Real> kNewSphCenter = rkSphere.Center()+rfTFirst*rkSphVelocity;
Vector3<Real> kNewSegOrigin = rkSegment.Origin()+rfTFirst*rkSegVelocity;
Real fPoint0 = rkSegment.Direction().Dot(kNewSegOrigin);
Real fPoint1 = fPoint0 + rkSegment.Direction().SquaredLength();
Real fSphere = rkSegment.Direction().Dot(kNewSphCenter);
if ( fSphere < fPoint0 )
{
// intersection at segment origin
akPoint[0] = kNewSegOrigin;
}
else if ( fSphere > fPoint1 )
{
// intersection at segment origin+direction
akPoint[0] = kNewSegOrigin + rkSegment.Direction();
}
else
{
// Intersection with interior point on edge. Use the projection
// along direction axis to find which point that is.
akPoint[0] = kNewSegOrigin + (fSphere-fPoint0)/(fPoint1-fPoint0) *
rkSegment.Direction();
}
riQuantity = 1;
return true;
}
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
// explicit instantiation
//----------------------------------------------------------------------------
namespace Wml
{
template WML_ITEM bool TestIntersection<float> (
const Segment3<float>&, const Sphere3<float>&);
template WML_ITEM bool TestIntersection<float> (
const Ray3<float>&, const Sphere3<float>&);
template WML_ITEM bool TestIntersection<float> (
const Line3<float>&, const Sphere3<float>&);
template WML_ITEM bool FindIntersection<float> (
const Segment3<float>&, const Sphere3<float>&, int&,
Vector3<float>[2]);
template WML_ITEM bool FindIntersection<float> (
const Ray3<float>&, const Sphere3<float>&, int&,
Vector3<float>[2]);
template WML_ITEM bool FindIntersection<float> (
const Line3<float>&, const Sphere3<float>&, int&,
Vector3<float>[2]);
template WML_ITEM bool TestIntersection<float> (
const Segment3<float>&, const Vector3<float>&, const Sphere3<float>&,
const Vector3<float>&);
template WML_ITEM bool FindIntersection<float> (
const Segment3<float>&, const Vector3<float>&, const Sphere3<float>&,
const Vector3<float>&, float&, float, int&, Vector3<float>[2]);
template WML_ITEM bool TestIntersection<double> (
const Segment3<double>&, const Sphere3<double>&);
template WML_ITEM bool TestIntersection<double> (
const Ray3<double>&, const Sphere3<double>&);
template WML_ITEM bool TestIntersection<double> (
const Line3<double>&, const Sphere3<double>&);
template WML_ITEM bool FindIntersection<double> (
const Segment3<double>&, const Sphere3<double>&, int&,
Vector3<double>[2]);
template WML_ITEM bool FindIntersection<double> (
const Ray3<double>&, const Sphere3<double>&, int&,
Vector3<double>[2]);
template WML_ITEM bool FindIntersection<double> (
const Line3<double>&, const Sphere3<double>&, int&,
Vector3<double>[2]);
template WML_ITEM bool TestIntersection<double> (
const Segment3<double>&, const Vector3<double>&, const Sphere3<double>&,
const Vector3<double>&);
template WML_ITEM bool FindIntersection<double> (
const Segment3<double>&, const Vector3<double>&, const Sphere3<double>&,
const Vector3<double>&, double&, double, int&, Vector3<double>[2]);
}
//----------------------------------------------------------------------------
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -