📄 wmlintrcir2cir2.cpp
字号:
// Magic Software, Inc.
// http://www.magic-software.com
// http://www.wild-magic.com
// Copyright (c) 2003. All Rights Reserved
//
// The Wild Magic Library (WML) source code is supplied under the terms of
// the license agreement http://www.magic-software.com/License/WildMagic.pdf
// and may not be copied or disclosed except in accordance with the terms of
// that agreement.
#include "WmlIntrCir2Cir2.h"
using namespace Wml;
//----------------------------------------------------------------------------
template <class Real>
static bool Find (const Vector2<Real>& rkC0, Real fR0,
const Vector2<Real>& rkC1, Real fR1, int& riQuantity,
Vector2<Real> akPoint[2])
{
// The two circles are |X-C0| = R0 and |X-C1| = R1. Define U = C1 - C0
// and V = Perp(U) where Perp(x,y) = (y,-x). Note that Dot(U,V) = 0 and
// |V|^2 = |U|^2. The intersection points X can be written in the form
// X = C0+s*U+t*V and X = C1+(s-1)*U+t*V. Squaring the circle equations
// and substituting these formulas into them yields
// R0^2 = (s^2 + t^2)*|U|^2
// R1^2 = ((s-1)^2 + t^2)*|U|^2.
// Subtracting and solving for s yields
// s = ((R0^2-R1^2)/|U|^2 + 1)/2
// Then replace in the first equation and solve for t^2
// t^2 = (R0^2/|U|^2) - s^2.
// In order for there to be solutions, the right-hand side must be
// nonnegative. Some algebra leads to the condition for existence of
// solutions,
// (|U|^2 - (R0+R1)^2)*(|U|^2 - (R0-R1)^2) <= 0.
// This reduces to
// |R0-R1| <= |U| <= |R0+R1|.
// If |U| = |R0-R1|, then the circles are side-by-side and just tangent.
// If |U| = |R0+R1|, then the circles are nested and just tangent.
// If |R0-R1| < |U| < |R0+R1|, then the two circles to intersect in two
// points.
Vector2<Real> kU = rkC1 - rkC0;
Real fUSqrLen = kU.SquaredLength();
if ( fUSqrLen == (Real)0.0 && fR0 == fR1 )
{
// Circles are the same. TO DO. Allow an 'epsilon' for the floating
// point compares?
riQuantity = -1;
return true;
}
Real fR0pR1 = fR0 + fR1;
Real fR0pR1Sqr = fR0pR1*fR0pR1;
if ( fUSqrLen > fR0pR1Sqr )
{
riQuantity = 0;
return false;
}
Real fR0mR1 = fR0 - fR1;
Real fR0mR1Sqr = fR0mR1*fR0mR1;
if ( fUSqrLen < fR0mR1Sqr )
{
riQuantity = 0;
return false;
}
if ( fUSqrLen < fR0pR1Sqr )
{
if ( fR0mR1Sqr < fUSqrLen )
{
Real fInvUSqrLen = ((Real)1.0)/fUSqrLen;
Real fS = ((Real)0.5)*((fR0*fR0-fR1*fR1)*fInvUSqrLen+(Real)1.0);
Vector2<Real> kTmp = rkC0 + fS*kU;
Real fT = Math<Real>::Sqrt(fR0*fR0*fInvUSqrLen - fS*fS);
Vector2<Real> kV(kU.Y(),-kU.X());
riQuantity = 2;
akPoint[0] = kTmp - fT*kV;
akPoint[1] = kTmp + fT*kV;
}
else
{
// |U| = |R0-R1|, circles are tangent
riQuantity = 1;
akPoint[0] = rkC0 + (fR0/fR0mR1)*kU;
}
}
else
{
// |U| = |R0+R1|, circles are tangent
riQuantity = 1;
akPoint[0] = rkC0 + (fR0/fR0pR1)*kU;
}
return true;
}
//----------------------------------------------------------------------------
template <class Real>
bool Wml::FindIntersection (const Circle2<Real>& rkCircle0,
const Circle2<Real>& rkCircle1, int& riQuantity, Vector2<Real> akPoint[2])
{
return Find(rkCircle0.Center(),rkCircle0.Radius(),rkCircle1.Center(),
rkCircle1.Radius(),riQuantity,akPoint);
}
//----------------------------------------------------------------------------
template <class Real>
bool Wml::FindIntersection (const Circle2<Real>& rkCircle,
const Arc2<Real>& rkArc, int& riQuantity, Vector2<Real> akPoint[2])
{
Vector2<Real> akIntrPoint[2];
bool bIntersects = Find(rkCircle.Center(),rkCircle.Radius(),
rkArc.Center(),rkArc.Radius(),riQuantity,akIntrPoint);
if ( riQuantity == -1 )
{
// arc is contained by the circle
return true;
}
if ( bIntersects )
{
// test if circle-circle intersection points are on the arc
int iIntrQuantity = riQuantity;
riQuantity = 0;
for (int i = 0; i < iIntrQuantity; i++)
{
akPoint[riQuantity] = akIntrPoint[i];
if ( rkArc.Contains(akPoint[riQuantity]) )
riQuantity++;
}
}
return riQuantity != 0;
}
//----------------------------------------------------------------------------
template <class Real>
bool Wml::FindIntersection (const Arc2<Real>& rkArc0,
const Arc2<Real>& rkArc1, int& riQuantity, Vector2<Real> akPoint[2])
{
Vector2<Real> akIntrPoint[2];
bool bIntersects = Find(rkArc0.Center(),rkArc0.Radius(),rkArc1.Center(),
rkArc1.Radius(),riQuantity,akIntrPoint);
if ( riQuantity == -1 )
{
// Arcs are cocircular. Determine if they overlap.
if ( rkArc1.Contains(rkArc0.End0()) )
{
if ( rkArc1.Contains(rkArc0.End1()) )
{
riQuantity = -2;
akPoint[0] = rkArc0.End0();
akPoint[1] = rkArc0.End1();
}
else
{
akPoint[0] = rkArc0.End0();
if ( rkArc0.End0() != rkArc1.End1() )
{
riQuantity = -2;
akPoint[1] = rkArc1.End1();
}
else
{
riQuantity = -1;
}
}
return true;
}
if ( rkArc1.Contains(rkArc0.End1()) )
{
akPoint[0] = rkArc1.End0();
if ( rkArc0.End1() != rkArc1.End0() )
{
riQuantity = -2;
akPoint[1] = rkArc0.End1();
}
else
{
riQuantity = -1;
}
return true;
}
Arc2<Real> kTransArc;
kTransArc.Center() = rkArc0.Center();
kTransArc.Radius() = rkArc0.Radius();
kTransArc.End0() = rkArc0.End0();
kTransArc.End1() = rkArc1.End0();
if ( kTransArc.Contains(rkArc0.End1()) )
{
riQuantity = 0;
return false;
}
else
{
riQuantity = -2;
akPoint[0] = rkArc1.End0();
akPoint[1] = rkArc1.End1();
return true;
}
}
if ( bIntersects )
{
// test if circle-circle intersection points are on the arcs
int iIntrQuantity = riQuantity;
riQuantity = 0;
for (int i = 0; i < iIntrQuantity; i++)
{
akPoint[riQuantity] = akIntrPoint[i];
if ( rkArc0.Contains(akPoint[riQuantity])
&& rkArc1.Contains(akPoint[riQuantity]) )
{
riQuantity++;
}
}
}
return riQuantity != 0;
}
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
// explicit instantiation
//----------------------------------------------------------------------------
namespace Wml
{
template WML_ITEM bool FindIntersection<float> (const Circle2<float>&,
const Circle2<float>&, int&, Vector2<float>[2]);
template WML_ITEM bool FindIntersection<float> (const Circle2<float>&,
const Arc2<float>&, int&, Vector2<float>[2]);
template WML_ITEM bool FindIntersection<float> (const Arc2<float>&,
const Arc2<float>&, int&, Vector2<float>[2]);
template WML_ITEM bool FindIntersection<double> (const Circle2<double>&,
const Circle2<double>&, int&, Vector2<double>[2]);
template WML_ITEM bool FindIntersection<double> (const Circle2<double>&,
const Arc2<double>&, int&, Vector2<double>[2]);
template WML_ITEM bool FindIntersection<double> (const Arc2<double>&,
const Arc2<double>&, int&, Vector2<double>[2]);
}
//----------------------------------------------------------------------------
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -