📄 wmltcbspline2.cpp
字号:
// Magic Software, Inc.
// http://www.magic-software.com
// http://www.wild-magic.com
// Copyright (c) 2003. All Rights Reserved
//
// The Wild Magic Library (WML) source code is supplied under the terms of
// the license agreement http://www.magic-software.com/License/WildMagic.pdf
// and may not be copied or disclosed except in accordance with the terms of
// that agreement.
#include "WmlTCBSpline2.h"
#include "WmlIntegrate1.h"
#include "WmlPolynomial1.h"
using namespace Wml;
//----------------------------------------------------------------------------
template <class Real>
TCBSpline2<Real>::TCBSpline2 (int iSegments, Real* afTime,
Vector2<Real>* akPoint, Real* afTension, Real* afContinuity, Real* afBias)
:
MultipleCurve2<Real>(iSegments,afTime)
{
// TO DO. Add 'boundary type' just as in natural splines.
assert( m_iSegments >= 3 );
// all four of these arrays have m_iSegments+1 elements
m_akPoint = akPoint;
m_afTension = afTension;
m_afContinuity = afContinuity;
m_afBias = afBias;
m_akA = new Vector2<Real>[m_iSegments];
m_akB = new Vector2<Real>[m_iSegments];
m_akC = new Vector2<Real>[m_iSegments];
m_akD = new Vector2<Real>[m_iSegments];
// For now, treat the first point as if it occurred twice.
ComputePoly(0,0,1,2);
for (int i = 1; i < m_iSegments-1; i++)
ComputePoly(i-1,i,i+1,i+2);
// For now, treat the last point as if it occurred twice.
ComputePoly(m_iSegments-2,m_iSegments-1,m_iSegments,m_iSegments);
}
//----------------------------------------------------------------------------
template <class Real>
TCBSpline2<Real>::~TCBSpline2 ()
{
delete[] m_akPoint;
delete[] m_afTension;
delete[] m_afContinuity;
delete[] m_afBias;
delete[] m_akA;
delete[] m_akB;
delete[] m_akC;
delete[] m_akD;
}
//----------------------------------------------------------------------------
template <class Real>
const Vector2<Real>* TCBSpline2<Real>::GetPoints () const
{
return m_akPoint;
}
//----------------------------------------------------------------------------
template <class Real>
const Real* TCBSpline2<Real>::GetTensions () const
{
return m_afTension;
}
//----------------------------------------------------------------------------
template <class Real>
const Real* TCBSpline2<Real>::GetContinuities () const
{
return m_afContinuity;
}
//----------------------------------------------------------------------------
template <class Real>
const Real* TCBSpline2<Real>::GetBiases () const
{
return m_afBias;
}
//----------------------------------------------------------------------------
template <class Real>
void TCBSpline2<Real>::ComputePoly (int i0, int i1, int i2, int i3)
{
Vector2<Real> kDiff = m_akPoint[i2] - m_akPoint[i1];
Real fDt = m_afTime[i2] - m_afTime[i1];
// build multipliers at P1
Real fOmt0 = (Real)1.0 - m_afTension[i1];
Real fOmc0 = (Real)1.0 - m_afContinuity[i1];
Real fOpc0 = (Real)1.0 + m_afContinuity[i1];
Real fOmb0 = (Real)1.0 - m_afBias[i1];
Real fOpb0 = (Real)1.0 + m_afBias[i1];
Real fAdj0 = ((Real)2.0)*fDt/(m_afTime[i2]-m_afTime[i0]);
Real fOut0 = ((Real)0.5)*fAdj0*fOmt0*fOpc0*fOpb0;
Real fOut1 = ((Real)0.5)*fAdj0*fOmt0*fOmc0*fOmb0;
// build outgoing tangent at P1
Vector2<Real> kTOut = fOut1*kDiff + fOut0*(m_akPoint[i1] - m_akPoint[i0]);
// build multipliers at point P2
Real fOmt1 = (Real)1.0 - m_afTension[i2];
Real fOmc1 = (Real)1.0 - m_afContinuity[i2];
Real fOpc1 = (Real)1.0 + m_afContinuity[i2];
Real fOmb1 = (Real)1.0 - m_afBias[i2];
Real fOpb1 = (Real)1.0 + m_afBias[i2];
Real fAdj1 = ((Real)2.0)*fDt/(m_afTime[i3] - m_afTime[i1]);
Real fIn0 = ((Real)0.5)*fAdj1*fOmt1*fOmc1*fOpb1;
Real fIn1 = ((Real)0.5)*fAdj1*fOmt1*fOpc1*fOmb1;
// build incoming tangent at P2
Vector2<Real> kTIn = fIn1*(m_akPoint[i3] - m_akPoint[i2]) + fIn0*kDiff;
m_akA[i1] = m_akPoint[i1];
m_akB[i1] = kTOut;
m_akC[i1] = ((Real)3.0)*kDiff - ((Real)2.0)*kTOut - kTIn;
m_akD[i1] = ((Real)-2.0)*kDiff + kTOut + kTIn;
}
//----------------------------------------------------------------------------
template <class Real>
Vector2<Real> TCBSpline2<Real>::GetPosition (Real fTime) const
{
int iKey;
Real fDt;
GetKeyInfo(fTime,iKey,fDt);
fDt /= (m_afTime[iKey+1] - m_afTime[iKey]);
Vector2<Real> kResult = m_akA[iKey] + fDt*(m_akB[iKey] +
fDt*(m_akC[iKey] + fDt*m_akD[iKey]));
return kResult;
}
//----------------------------------------------------------------------------
template <class Real>
Vector2<Real> TCBSpline2<Real>::GetFirstDerivative (Real fTime) const
{
int iKey;
Real fDt;
GetKeyInfo(fTime,iKey,fDt);
fDt /= (m_afTime[iKey+1] - m_afTime[iKey]);
Vector2<Real> kResult = m_akB[iKey] + fDt*(((Real)2.0)*m_akC[iKey] +
((Real)3.0)*fDt*m_akD[iKey]);
return kResult;
}
//----------------------------------------------------------------------------
template <class Real>
Vector2<Real> TCBSpline2<Real>::GetSecondDerivative (Real fTime) const
{
int iKey;
Real fDt;
GetKeyInfo(fTime,iKey,fDt);
fDt /= (m_afTime[iKey+1] - m_afTime[iKey]);
Vector2<Real> kResult = ((Real)2.0)*m_akC[iKey] +
((Real)6.0)*fDt*m_akD[iKey];
return kResult;
}
//----------------------------------------------------------------------------
template <class Real>
Vector2<Real> TCBSpline2<Real>::GetThirdDerivative (Real fTime) const
{
int iKey;
Real fDt;
GetKeyInfo(fTime,iKey,fDt);
fDt /= (m_afTime[iKey+1] - m_afTime[iKey]);
Vector2<Real> kResult = ((Real)6.0)*m_akD[iKey];
return kResult;
}
//----------------------------------------------------------------------------
template <class Real>
Real TCBSpline2<Real>::GetSpeedKey (int iKey, Real fTime) const
{
Vector2<Real> kVelocity = m_akB[iKey] + fTime*(((Real)2.0)*m_akC[iKey] +
((Real)3.0)*fTime*m_akD[iKey]);
return kVelocity.Length();
}
//----------------------------------------------------------------------------
template <class Real>
Real TCBSpline2<Real>::GetLengthKey (int iKey, Real fT0, Real fT1) const
{
ThisPlusKey kData(this,iKey);
return Integrate1<Real>::RombergIntegral(fT0,fT1,GetSpeedWithData,
(void*)&kData);
}
//----------------------------------------------------------------------------
template <class Real>
Real TCBSpline2<Real>::GetVariationKey (int iKey, Real fT0, Real fT1,
const Vector2<Real>& rkA, const Vector2<Real>& rkB) const
{
Polynomial1<Real> kXPoly(3);
kXPoly[0] = m_akA[iKey].X();
kXPoly[1] = m_akB[iKey].X();
kXPoly[2] = m_akC[iKey].X();
kXPoly[3] = m_akD[iKey].X();
Polynomial1<Real> kYPoly(3);
kYPoly[0] = m_akA[iKey].Y();
kYPoly[1] = m_akB[iKey].Y();
kYPoly[2] = m_akC[iKey].Y();
kYPoly[3] = m_akD[iKey].Y();
// construct line segment A + t*B
Polynomial1<Real> kLx(1), kLy(1);
kLx[0] = rkA.X();
kLx[1] = rkB.X();
kLy[0] = rkA.Y();
kLy[1] = rkB.Y();
// compute |X(t) - L(t)|^2
Polynomial1<Real> kDx = kXPoly - kLx;
Polynomial1<Real> kDy = kYPoly - kLy;
Polynomial1<Real> kNormSqr = kDx*kDx + kDy*kDy;
// compute indefinite integral of |X(t)-L(t)|^2
Polynomial1<Real> kIntegral(kNormSqr.GetDegree()+1);
kIntegral[0] = (Real)0.0;
for (int i = 1; i <= kIntegral.GetDegree(); i++)
kIntegral[i] = kNormSqr[i-1]/i;
// compute definite Integral(t0,t1,|X(t)-L(t)|^2)
Real fResult = kIntegral(fT1) - kIntegral(fT0);
return fResult;
}
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
// explicit instantiation
//----------------------------------------------------------------------------
namespace Wml
{
template class WML_ITEM TCBSpline2<float>;
template class WML_ITEM TCBSpline2<double>;
}
//----------------------------------------------------------------------------
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -