📄 wmldelaunay3.cpp
字号:
// Magic Software, Inc.
// http://www.magic-software.com
// http://www.wild-magic.com
// Copyright (c) 2003. All Rights Reserved
//
// The Wild Magic Library (WML) source code is supplied under the terms of
// the license agreement http://www.magic-software.com/License/WildMagic.pdf
// and may not be copied or disclosed except in accordance with the terms of
// that agreement.
#include "WmlDelaunay3.h"
using namespace Wml;
//----------------------------------------------------------------------------
template <class Real>
Delaunay3<Real>::Delaunay3 (int iVertexQuantity, Vector3<Real>* akVertex)
{
assert( iVertexQuantity >= 4 && akVertex );
m_akTetrahedron = NULL;
m_bOwner = true;
m_iVertexQuantity = iVertexQuantity;
m_akVertex = akVertex;
// Make a copy of the input vertices. These will be modified. The
// extra four slots are required for temporary storage.
Vector3<Real>* akPoint = new Vector3<Real>[m_iVertexQuantity+4];
memcpy(akPoint,akVertex,m_iVertexQuantity*sizeof(Vector3<Real>));
// compute the axis-aligned bounding box of the vertices
m_fXMin = akPoint[0].X();
m_fXMax = m_fXMin;
m_fYMin = akPoint[0].Y();
m_fYMax = m_fYMin;
m_fZMin = akPoint[0].Z();
m_fZMax = m_fZMin;
int i;
for (i = 1; i < m_iVertexQuantity; i++)
{
Real fValue = akPoint[i].X();
if ( m_fXMax < fValue )
m_fXMax = fValue;
if ( m_fXMin > fValue )
m_fXMin = fValue;
fValue = akPoint[i].Y();
if ( m_fYMax < fValue )
m_fYMax = fValue;
if ( m_fYMin > fValue )
m_fYMin = fValue;
fValue = akPoint[i].Z();
if ( m_fZMax < fValue )
m_fZMax = fValue;
if ( m_fZMin > fValue )
m_fZMin = fValue;
}
m_fXRange = m_fXMax-m_fXMin;
m_fYRange = m_fYMax-m_fYMin;
m_fZRange = m_fZMax-m_fZMin;
// need to scale the data later to do a correct tetrahedron count
Real fMaxRange = m_fXRange;
if ( fMaxRange < m_fYRange )
fMaxRange = m_fYRange;
if ( fMaxRange < m_fZRange )
fMaxRange = m_fZRange;
Real fMaxRangeCube = fMaxRange*fMaxRange*fMaxRange;
// Tweak the points by very small random numbers to help avoid
// cosphericities in the vertices.
Real fAmplitude = ((Real)0.5)*ms_fEpsilon*fMaxRange;
for (i = 0; i < m_iVertexQuantity; i++)
{
akPoint[i].X() += fAmplitude*Math<Real>::SymmetricRandom();
akPoint[i].Y() += fAmplitude*Math<Real>::SymmetricRandom();
akPoint[i].Z() += fAmplitude*Math<Real>::SymmetricRandom();
}
Real aafWork[4][3] =
{
{ ((Real)8.0)*ms_fRange, -ms_fRange, -ms_fRange },
{ -ms_fRange, ((Real)8.0)*ms_fRange, -ms_fRange },
{ -ms_fRange, -ms_fRange, ((Real)8.0)*ms_fRange },
{ -ms_fRange, -ms_fRange, -ms_fRange }
};
for (i = 0; i < 4; i++)
{
akPoint[m_iVertexQuantity+i].X() = m_fXMin+m_fXRange*aafWork[i][0];
akPoint[m_iVertexQuantity+i].Y() = m_fYMin+m_fYRange*aafWork[i][1];
akPoint[m_iVertexQuantity+i].Z() = m_fZMin+m_fZRange*aafWork[i][2];
}
int i0, i1, i2, i3, i4, i5, i6, i7, i8, i9, i11, aiII[3];
Real fTmp;
int iSixTSize = 6*ms_iTSize;
int** aaiTmp = new int*[iSixTSize+1];
aaiTmp[0] = new int[3*(iSixTSize+1)];
for (i0 = 1; i0 < iSixTSize+1; i0++)
aaiTmp[i0] = aaiTmp[0] + 3*i0;
// Estimate of how many tetrahedrons there can be. Since theoretically
// the number is O(N^2), this could be quite large. You may need to
// increase the quantity factor if a call to this function fails.
i1 = ms_iQuantityFactor*m_iVertexQuantity;
int* aaID = new int[i1];
for (i0 = 0; i0 < i1; i0++)
aaID[i0] = i0;
int** aaiA3S = new int*[i1];
aaiA3S[0] = new int[4*i1];
for (i0 = 1; i0 < i1; i0++)
aaiA3S[i0] = aaiA3S[0] + 4*i0;
aaiA3S[0][0] = m_iVertexQuantity;
aaiA3S[0][1] = m_iVertexQuantity+1;
aaiA3S[0][2] = m_iVertexQuantity+2;
aaiA3S[0][3] = m_iVertexQuantity+3;
// circumscribed centers and radii
Real** aafCCR = new Real*[i1];
aafCCR[0] = new Real[4*i1];
for (i0 = 1; i0 < i1; i0++)
aafCCR[i0] = aafCCR[0] + 4*i0;
aafCCR[0][0] = (Real)0.0;
aafCCR[0][1] = (Real)0.0;
aafCCR[0][2] = (Real)0.0;
aafCCR[0][3] = Math<Real>::MAX_REAL;
int iTetraQuantity = 1; // number of tetrahedra
i4 = 1;
// compute tetrahedralization
for (i0 = 0; i0 < m_iVertexQuantity; i0++)
{
i1 = i7 = -1;
i9 = 0;
for (i11 = 0; i11 < iTetraQuantity; i11++)
{
i1++;
while ( aaiA3S[i1][0] < 0 )
i1++;
fTmp = aafCCR[i1][3];
for (i2 = 0; i2 < 3; i2++)
{
Real fZ = akPoint[i0][i2]-aafCCR[i1][i2];
fTmp -= fZ*fZ;
if ( fTmp < (Real)0.0 )
goto Corner3;
}
i9--;
i4--;
aaID[i4] = i1;
for (i2 = 0; i2 < 4; i2++)
{
aiII[0] = 0;
if ( aiII[0] == i2 )
aiII[0]++;
for (i3 = 1; i3 < 3; i3++)
{
aiII[i3] = aiII[i3-1] + 1;
if ( aiII[i3] == i2 )
aiII[i3]++;
}
if ( i7 > 2 )
{
i8 = i7;
for (i3 = 0; i3 <= i8; i3++)
{
for (i5 = 0; i5 < 3; i5++)
{
if ( aaiA3S[i1][aiII[i5]] != aaiTmp[i3][i5] )
goto Corner1;
}
for (i6 = 0; i6 < 3; i6++)
aaiTmp[i3][i6] = aaiTmp[i8][i6];
i7--;
goto Corner2;
Corner1:;
}
}
if ( ++i7 > iSixTSize )
{
// Temporary storage exceeded. Increase ms_iTSize and
// call the constructor again.
assert( false );
goto ExitDelaunay;
}
for (i3 = 0; i3 < 3; i3++)
aaiTmp[i7][i3] = aaiA3S[i1][aiII[i3]];
Corner2:;
}
aaiA3S[i1][0] = -1;
Corner3:;
}
for (i1 = 0; i1 <= i7; i1++)
{
for (i2 = 0; i2 < 3; i2++)
for (aafWork[3][i2] = 0, i3 = 0; i3 < 3; i3++)
{
aafWork[i3][i2] = akPoint[aaiTmp[i1][i2]][i3] -
akPoint[i0][i3];
aafWork[3][i2] += ((Real)0.5)*aafWork[i3][i2]*(
akPoint[aaiTmp[i1][i2]][i3] + akPoint[i0][i3]);
}
fTmp = (aafWork[0][0]*(aafWork[1][1]*aafWork[2][2] -
aafWork[1][2]*aafWork[2][1])) - (aafWork[1][0]*(
aafWork[0][1]*aafWork[2][2] - aafWork[0][2]*aafWork[2][1])) +
(aafWork[2][0]*(aafWork[0][1]*aafWork[1][2] - aafWork[0][2]*
aafWork[1][1]));
assert( fTmp != (Real)0.0 );
fTmp = ((Real)1.0)/fTmp;
aafCCR[aaID[i4]][0] = ((aafWork[3][0]*(aafWork[1][1]*
aafWork[2][2] - aafWork[1][2]*aafWork[2][1])) -
(aafWork[1][0]*(aafWork[3][1]*aafWork[2][2] - aafWork[3][2]*
aafWork[2][1])) + (aafWork[2][0]*(aafWork[3][1]*
aafWork[1][2] - aafWork[3][2]*aafWork[1][1])))*fTmp;
aafCCR[aaID[i4]][1] = ((aafWork[0][0]*(aafWork[3][1]*
aafWork[2][2] - aafWork[3][2]*aafWork[2][1])) -
(aafWork[3][0]*(aafWork[0][1]*aafWork[2][2] - aafWork[0][2]*
aafWork[2][1])) + (aafWork[2][0]*(aafWork[0][1]*
aafWork[3][2] - aafWork[0][2]*aafWork[3][1])))*fTmp;
aafCCR[aaID[i4]][2] = ((aafWork[0][0]*(aafWork[1][1]*
aafWork[3][2] - aafWork[1][2]*aafWork[3][1])) -
(aafWork[1][0]*(aafWork[0][1]*aafWork[3][2] - aafWork[0][2]*
aafWork[3][1])) + (aafWork[3][0]*(aafWork[0][1]*
aafWork[1][2] - aafWork[0][2]*aafWork[1][1])))*fTmp;
for (aafCCR[aaID[i4]][3] = 0, i2 = 0; i2 < 3; i2++)
{
Real fZ = akPoint[i0][i2] - aafCCR[aaID[i4]][i2];
aafCCR[aaID[i4]][3] += fZ*fZ;
aaiA3S[aaID[i4]][i2] = aaiTmp[i1][i2];
}
aaiA3S[aaID[i4]][3] = i0;
i4++;
i9++;
}
iTetraQuantity += i9;
}
// count the number of tetrahedra
m_iTetrahedronQuantity = 0;
i0 = -1;
for (i11 = 0; i11 < iTetraQuantity; i11++)
{
i0++;
while ( aaiA3S[i0][0] < 0 )
i0++;
if ( aaiA3S[i0][0] < m_iVertexQuantity )
{
for (i1 = 0; i1 < 3; i1++)
{
for (i2 = 0; i2 < 3; i2++)
{
aafWork[i2][i1] = akPoint[aaiA3S[i0][i1]][i2] -
akPoint[aaiA3S[i0][3]][i2];
}
}
fTmp = ((aafWork[0][0]*(aafWork[1][1]*aafWork[2][2] -
aafWork[1][2]*aafWork[2][1])) - (aafWork[1][0]*(
aafWork[0][1]*aafWork[2][2] - aafWork[0][2]*aafWork[2][1])) +
(aafWork[2][0]*(aafWork[0][1]*aafWork[1][2] - aafWork[0][2]*
aafWork[1][1])));
if ( Math<Real>::FAbs(fTmp) > ms_fEpsilon*fMaxRangeCube )
m_iTetrahedronQuantity++;
}
}
// create the tetrahedra
m_akTetrahedron = new Tetrahedron[m_iTetrahedronQuantity];
m_iTetrahedronQuantity = 0;
i0 = -1;
for (i11 = 0; i11 < iTetraQuantity; i11++)
{
i0++;
while ( aaiA3S[i0][0] < 0 )
i0++;
if ( aaiA3S[i0][0] < m_iVertexQuantity )
{
for (i1 = 0; i1 < 3; i1++)
{
for (i2 = 0; i2 < 3; i2++)
{
aafWork[i2][i1] = akPoint[aaiA3S[i0][i1]][i2] -
akPoint[aaiA3S[i0][3]][i2];
}
}
fTmp = ((aafWork[0][0]*(aafWork[1][1]*aafWork[2][2] -
aafWork[1][2]*aafWork[2][1])) - (aafWork[1][0]*(
aafWork[0][1]*aafWork[2][2] - aafWork[0][2]*aafWork[2][1])) +
(aafWork[2][0]*(aafWork[0][1]*aafWork[1][2]-aafWork[0][2]*
aafWork[1][1])));
if ( Math<Real>::FAbs(fTmp) > ms_fEpsilon*fMaxRangeCube )
{
int iDelta = (fTmp < (Real)0.0 ? 1 : 0);
Tetrahedron& rkTetra =
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -