📄 wmlintplinearnonuniform3.cpp
字号:
// Magic Software, Inc.
// http://www.magic-software.com
// http://www.wild-magic.com
// Copyright (c) 2003. All Rights Reserved
//
// The Wild Magic Library (WML) source code is supplied under the terms of
// the license agreement http://www.magic-software.com/License/WildMagic.pdf
// and may not be copied or disclosed except in accordance with the terms of
// that agreement.
#include "WmlIntpLinearNonuniform3.h"
using namespace Wml;
//----------------------------------------------------------------------------
template <class Real>
IntpLinearNonuniform3<Real>::IntpLinearNonuniform3 (int iVertexQuantity,
Vector3<Real>* akVertex, Real* afF)
:
Delaunay3<Real>(iVertexQuantity,akVertex)
{
assert( afF );
m_afF = afF;
}
//----------------------------------------------------------------------------
template <class Real>
IntpLinearNonuniform3<Real>::IntpLinearNonuniform3 (Delaunay3<Real>& rkNet,
Real* afF)
:
Delaunay3<Real>(rkNet)
{
assert( afF );
m_afF = afF;
}
//----------------------------------------------------------------------------
template <class Real>
IntpLinearNonuniform3<Real>::~IntpLinearNonuniform3 ()
{
delete[] m_afF;
}
//----------------------------------------------------------------------------
template <class Real>
bool IntpLinearNonuniform3<Real>::Evaluate (const Vector3<Real>& rkPoint,
Real& rfF)
{
// Determine which triangle contains the target point.
//
// TO DO. This is an easy-to-implement, but slow search. Better is to
// start with a single tetrahedron. If the point is inside, evaluate and
// return. If the point is outside, the next tetrahedron to visit is one
// adjacent to the first. The adjacent one you select is the one that is
// intersected by the line segment whose end points are the centroid of
// the current tetrahedron and the target point. You effectively follow
// a linear path through the tetrahedra to get to the target point.
Vector3<Real> kV0, kV1, kV2, kV3;
typename Delaunay3<Real>::Tetrahedron* pkTetra;
Real afNumer[4], fDenom;
int i;
for (i = 0; i < m_iTetrahedronQuantity; i++)
{
pkTetra = &m_akTetrahedron[i];
kV0 = m_akVertex[pkTetra->m_aiVertex[0]];
kV1 = m_akVertex[pkTetra->m_aiVertex[1]];
kV2 = m_akVertex[pkTetra->m_aiVertex[2]];
kV3 = m_akVertex[pkTetra->m_aiVertex[3]];
ComputeBarycenter(kV0,kV1,kV2,kV3,rkPoint,afNumer,fDenom);
if ( InTetrahedron(afNumer,fDenom) )
break;
}
if ( i == m_iTetrahedronQuantity )
{
// point is outside interpolation region
return false;
}
// compute barycentric combination of function values at vertices
rfF = (afNumer[0]*m_afF[pkTetra->m_aiVertex[0]] +
afNumer[1]*m_afF[pkTetra->m_aiVertex[1]] +
afNumer[2]*m_afF[pkTetra->m_aiVertex[2]] +
afNumer[3]*m_afF[pkTetra->m_aiVertex[3]])/fDenom;
return true;
}
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
// explicit instantiation
//----------------------------------------------------------------------------
namespace Wml
{
template class WML_ITEM IntpLinearNonuniform3<float>;
template class WML_ITEM IntpLinearNonuniform3<double>;
}
//----------------------------------------------------------------------------
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -