📄 stl_algobase.h
字号:
template<typename _BI1, typename _BI2> inline _BI2 __copy_backward_aux(_BI1 __first, _BI1 __last, _BI2 __result) { typedef typename __type_traits<typename iterator_traits<_BI2>::value_type> ::has_trivial_assignment_operator _Trivial; return std::__copy_backward_dispatch<_BI1, _BI2, _Trivial>::copy(__first, __last, __result); } template <typename _BI1, typename _BI2> inline _BI2 __copy_backward_output_normal_iterator(_BI1 __first, _BI1 __last, _BI2 __result, __true_type) { return _BI2(std::__copy_backward_aux(__first, __last, __result.base())); } template <typename _BI1, typename _BI2> inline _BI2 __copy_backward_output_normal_iterator(_BI1 __first, _BI1 __last, _BI2 __result, __false_type) { return std::__copy_backward_aux(__first, __last, __result); } template <typename _BI1, typename _BI2> inline _BI2 __copy_backward_input_normal_iterator(_BI1 __first, _BI1 __last, _BI2 __result, __true_type) { typedef typename _Is_normal_iterator<_BI2>::_Normal __Normal; return std::__copy_backward_output_normal_iterator(__first.base(), __last.base(), __result, __Normal()); } template <typename _BI1, typename _BI2> inline _BI2 __copy_backward_input_normal_iterator(_BI1 __first, _BI1 __last, _BI2 __result, __false_type) { typedef typename _Is_normal_iterator<_BI2>::_Normal __Normal; return std::__copy_backward_output_normal_iterator(__first, __last, __result, __Normal()); } /** * @brief Copies the range [first,last) into result. * @param first A bidirectional iterator. * @param last A bidirectional iterator. * @param result A bidirectional iterator. * @return result - (first - last) * * The function has the same effect as copy, but starts at the end of the * range and works its way to the start, returning the start of the result. * This inline function will boil down to a call to @c memmove whenever * possible. Failing that, if random access iterators are passed, then the * loop count will be known (and therefore a candidate for compiler * optimizations such as unrolling). * * Result may not be in the range [first,last). Use copy instead. Note * that the start of the output range may overlap [first,last). */ template <typename _BI1, typename _BI2> inline _BI2 copy_backward(_BI1 __first, _BI1 __last, _BI2 __result) { // concept requirements __glibcxx_function_requires(_BidirectionalIteratorConcept<_BI1>) __glibcxx_function_requires(_Mutable_BidirectionalIteratorConcept<_BI2>) __glibcxx_function_requires(_ConvertibleConcept< typename iterator_traits<_BI1>::value_type, typename iterator_traits<_BI2>::value_type>) __glibcxx_requires_valid_range(__first, __last); typedef typename _Is_normal_iterator<_BI1>::_Normal __Normal; return std::__copy_backward_input_normal_iterator(__first, __last, __result, __Normal()); } /** * @brief Fills the range [first,last) with copies of value. * @param first A forward iterator. * @param last A forward iterator. * @param value A reference-to-const of arbitrary type. * @return Nothing. * * This function fills a range with copies of the same value. For one-byte * types filling contiguous areas of memory, this becomes an inline call to * @c memset. */ template<typename _ForwardIterator, typename _Tp> void fill(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __value) { // concept requirements __glibcxx_function_requires(_Mutable_ForwardIteratorConcept< _ForwardIterator>) __glibcxx_requires_valid_range(__first, __last); for ( ; __first != __last; ++__first) *__first = __value; } /** * @brief Fills the range [first,first+n) with copies of value. * @param first An output iterator. * @param n The count of copies to perform. * @param value A reference-to-const of arbitrary type. * @return The iterator at first+n. * * This function fills a range with copies of the same value. For one-byte * types filling contiguous areas of memory, this becomes an inline call to * @c memset. */ template<typename _OutputIterator, typename _Size, typename _Tp> _OutputIterator fill_n(_OutputIterator __first, _Size __n, const _Tp& __value) { // concept requirements __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,_Tp>) for ( ; __n > 0; --__n, ++__first) *__first = __value; return __first; } // Specialization: for one-byte types we can use memset. inline void fill(unsigned char* __first, unsigned char* __last, const unsigned char& __c) { __glibcxx_requires_valid_range(__first, __last); const unsigned char __tmp = __c; std::memset(__first, __tmp, __last - __first); } inline void fill(signed char* __first, signed char* __last, const signed char& __c) { __glibcxx_requires_valid_range(__first, __last); const signed char __tmp = __c; std::memset(__first, static_cast<unsigned char>(__tmp), __last - __first); } inline void fill(char* __first, char* __last, const char& __c) { __glibcxx_requires_valid_range(__first, __last); const char __tmp = __c; std::memset(__first, static_cast<unsigned char>(__tmp), __last - __first); } template<typename _Size> inline unsigned char* fill_n(unsigned char* __first, _Size __n, const unsigned char& __c) { std::fill(__first, __first + __n, __c); return __first + __n; } template<typename _Size> inline signed char* fill_n(char* __first, _Size __n, const signed char& __c) { std::fill(__first, __first + __n, __c); return __first + __n; } template<typename _Size> inline char* fill_n(char* __first, _Size __n, const char& __c) { std::fill(__first, __first + __n, __c); return __first + __n; } /** * @brief Finds the places in ranges which don't match. * @param first1 An input iterator. * @param last1 An input iterator. * @param first2 An input iterator. * @return A pair of iterators pointing to the first mismatch. * * This compares the elements of two ranges using @c == and returns a pair * of iterators. The first iterator points into the first range, the * second iterator points into the second range, and the elements pointed * to by the iterators are not equal. */ template<typename _InputIterator1, typename _InputIterator2> pair<_InputIterator1, _InputIterator2> mismatch(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>) __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>) __glibcxx_function_requires(_EqualOpConcept< typename iterator_traits<_InputIterator1>::value_type, typename iterator_traits<_InputIterator2>::value_type>) __glibcxx_requires_valid_range(__first1, __last1); while (__first1 != __last1 && *__first1 == *__first2) { ++__first1; ++__first2; } return pair<_InputIterator1, _InputIterator2>(__first1, __first2); } /** * @brief Finds the places in ranges which don't match. * @param first1 An input iterator. * @param last1 An input iterator. * @param first2 An input iterator. * @param binary_pred A binary predicate @link s20_3_1_base functor@endlink. * @return A pair of iterators pointing to the first mismatch. * * This compares the elements of two ranges using the binary_pred * parameter, and returns a pair * of iterators. The first iterator points into the first range, the * second iterator points into the second range, and the elements pointed * to by the iterators are not equal. */ template<typename _InputIterator1, typename _InputIterator2, typename _BinaryPredicate> pair<_InputIterator1, _InputIterator2> mismatch(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _BinaryPredicate __binary_pred) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>) __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>) __glibcxx_requires_valid_range(__first1, __last1); while (__first1 != __last1 && __binary_pred(*__first1, *__first2)) { ++__first1; ++__first2; } return pair<_InputIterator1, _InputIterator2>(__first1, __first2); } /** * @brief Tests a range for element-wise equality. * @param first1 An input iterator. * @param last1 An input iterator. * @param first2 An input iterator. * @return A boolean true or false. * * This compares the elements of two ranges using @c == and returns true or * false depending on whether all of the corresponding elements of the * ranges are equal. */ template<typename _InputIterator1, typename _InputIterator2> inline bool equal(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>) __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>) __glibcxx_function_requires(_EqualOpConcept< typename iterator_traits<_InputIterator1>::value_type, typename iterator_traits<_InputIterator2>::value_type>) __glibcxx_requires_valid_range(__first1, __last1); for ( ; __first1 != __last1; ++__first1, ++__first2) if (!(*__first1 == *__first2)) return false; return true; } /** * @brief Tests a range for element-wise equality. * @param first1 An input iterator. * @param last1 An input iterator. * @param first2 An input iterator. * @param binary_pred A binary predicate @link s20_3_1_base functor@endlink. * @return A boolean true or false. * * This compares the elements of two ranges using the binary_pred * parameter, and returns true or * false depending on whether all of the corresponding elements of the * ranges are equal. */ template<typename _InputIterator1, typename _InputIterator2, typename _BinaryPredicate> inline bool equal(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _BinaryPredicate __binary_pred) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>) __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>) __glibcxx_requires_valid_range(__first1, __last1); for ( ; __first1 != __last1; ++__first1, ++__first2) if (!__binary_pred(*__first1, *__first2)) return false; return true; } /** * @brief Performs "dictionary" comparison on ranges. * @param first1 An input iterator. * @param last1 An input iterator. * @param first2 An input iterator. * @param last2 An input iterator. * @return A boolean true or false. * * "Returns true if the sequence of elements defined by the range * [first1,last1) is lexicographically less than the sequence of elements * defined by the range [first2,last2). Returns false otherwise." * (Quoted from [25.3.8]/1.) If the iterators are all character pointers, * then this is an inline call to @c memcmp. */ template<typename _InputIterator1, typename _InputIterator2> bool lexicographical_compare(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>) __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>) __glibcxx_function_requires(_LessThanOpConcept< typename iterator_traits<_InputIterator1>::value_type, typename iterator_traits<_InputIterator2>::value_type>) __glibcxx_function_requires(_LessThanOpConcept< typename iterator_traits<_InputIterator2>::value_type, typename iterator_traits<_InputIterator1>::value_type>) __glibcxx_requires_valid_range(__first1, __last1); __glibcxx_requires_valid_range(__first2, __last2); for (;__first1 != __last1 && __first2 != __last2; ++__first1, ++__first2) { if (*__first1 < *__first2) return true; if (*__first2 < *__first1) return false; } return __first1 == __last1 && __first2 != __last2; } /** * @brief Performs "dictionary" comparison on ranges. * @param first1 An input iterator. * @param last1 An input iterator. * @param first2 An input iterator. * @param last2 An input iterator. * @param comp A @link s20_3_3_comparisons comparison functor@endlink. * @return A boolean true or false. * * The same as the four-parameter @c lexigraphical_compare, but uses the * comp parameter instead of @c <. */ template<typename _InputIterator1, typename _InputIterator2, typename _Compare> bool lexicographical_compare(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2, _Compare __comp) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>) __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>) __glibcxx_requires_valid_range(__first1, __last1); __glibcxx_requires_valid_range(__first2, __last2); for ( ; __first1 != __last1 && __first2 != __last2 ; ++__first1, ++__first2) { if (__comp(*__first1, *__first2)) return true; if (__comp(*__first2, *__first1)) return false; } return __first1 == __last1 && __first2 != __last2; } inline bool lexicographical_compare(const unsigned char* __first1, const unsigned char* __last1, const unsigned char* __first2, const unsigned char* __last2) { __glibcxx_requires_valid_range(__first1, __last1); __glibcxx_requires_valid_range(__first2, __last2); const size_t __len1 = __last1 - __first1; const size_t __len2 = __last2 - __first2; const int __result = std::memcmp(__first1, __first2, std::min(__len1, __len2)); return __result != 0 ? __result < 0 : __len1 < __len2; } inline bool lexicographical_compare(const char* __first1, const char* __last1, const char* __first2, const char* __last2) { __glibcxx_requires_valid_range(__first1, __last1); __glibcxx_requires_valid_range(__first2, __last2);#if CHAR_MAX == SCHAR_MAX return std::lexicographical_compare((const signed char*) __first1, (const signed char*) __last1, (const signed char*) __first2, (const signed char*) __last2);#else /* CHAR_MAX == SCHAR_MAX */ return std::lexicographical_compare((const unsigned char*) __first1, (const unsigned char*) __last1, (const unsigned char*) __first2, (const unsigned char*) __last2);#endif /* CHAR_MAX == SCHAR_MAX */ }} // namespace std#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -