📄 stl_set.h
字号:
/** * @brief Attempts to insert an element into the %set. * @param x Element to be inserted. * @return A pair, of which the first element is an iterator that points * to the possibly inserted element, and the second is a bool * that is true if the element was actually inserted. * * This function attempts to insert an element into the %set. A %set * relies on unique keys and thus an element is only inserted if it is * not already present in the %set. * * Insertion requires logarithmic time. */ pair<iterator,bool> insert(const value_type& __x) { pair<typename _Rep_type::iterator, bool> __p = _M_t.insert_unique(__x); return pair<iterator, bool>(__p.first, __p.second); } /** * @brief Attempts to insert an element into the %set. * @param position An iterator that serves as a hint as to where the * element should be inserted. * @param x Element to be inserted. * @return An iterator that points to the element with key of @a x (may * or may not be the element passed in). * * This function is not concerned about whether the insertion took place, * and thus does not return a boolean like the single-argument insert() * does. Note that the first parameter is only a hint and can * potentially improve the performance of the insertion process. A bad * hint would cause no gains in efficiency. * * See http://gcc.gnu.org/onlinedocs/libstdc++/23_containers/howto.html#4 * for more on "hinting". * * Insertion requires logarithmic time (if the hint is not taken). */ iterator insert(iterator __position, const value_type& __x) { typedef typename _Rep_type::iterator _Rep_iterator; return _M_t.insert_unique((_Rep_iterator&)__position, __x); } /** * @brief A template function that attemps to insert a range of elements. * @param first Iterator pointing to the start of the range to be * inserted. * @param last Iterator pointing to the end of the range. * * Complexity similar to that of the range constructor. */ template<class _InputIterator> void insert(_InputIterator __first, _InputIterator __last) { _M_t.insert_unique(__first, __last); } /** * @brief Erases an element from a %set. * @param position An iterator pointing to the element to be erased. * * This function erases an element, pointed to by the given iterator, * from a %set. Note that this function only erases the element, and * that if the element is itself a pointer, the pointed-to memory is not * touched in any way. Managing the pointer is the user's responsibilty. */ void erase(iterator __position) { typedef typename _Rep_type::iterator _Rep_iterator; _M_t.erase((_Rep_iterator&)__position); } /** * @brief Erases elements according to the provided key. * @param x Key of element to be erased. * @return The number of elements erased. * * This function erases all the elements located by the given key from * a %set. * Note that this function only erases the element, and that if * the element is itself a pointer, the pointed-to memory is not touched * in any way. Managing the pointer is the user's responsibilty. */ size_type erase(const key_type& __x) { return _M_t.erase(__x); } /** * @brief Erases a [first,last) range of elements from a %set. * @param first Iterator pointing to the start of the range to be * erased. * @param last Iterator pointing to the end of the range to be erased. * * This function erases a sequence of elements from a %set. * Note that this function only erases the element, and that if * the element is itself a pointer, the pointed-to memory is not touched * in any way. Managing the pointer is the user's responsibilty. */ void erase(iterator __first, iterator __last) { typedef typename _Rep_type::iterator _Rep_iterator; _M_t.erase((_Rep_iterator&)__first, (_Rep_iterator&)__last); } /** * Erases all elements in a %set. Note that this function only erases * the elements, and that if the elements themselves are pointers, the * pointed-to memory is not touched in any way. Managing the pointer is * the user's responsibilty. */ void clear() { _M_t.clear(); } // set operations: /** * @brief Finds the number of elements. * @param x Element to located. * @return Number of elements with specified key. * * This function only makes sense for multisets; for set the result will * either be 0 (not present) or 1 (present). */ size_type count(const key_type& __x) const { return _M_t.find(__x) == _M_t.end() ? 0 : 1; } // _GLIBCXX_RESOLVE_LIB_DEFECTS // 214. set::find() missing const overload //@{ /** * @brief Tries to locate an element in a %set. * @param x Element to be located. * @return Iterator pointing to sought-after element, or end() if not * found. * * This function takes a key and tries to locate the element with which * the key matches. If successful the function returns an iterator * pointing to the sought after element. If unsuccessful it returns the * past-the-end ( @c end() ) iterator. */ iterator find(const key_type& __x) { return _M_t.find(__x); } const_iterator find(const key_type& __x) const { return _M_t.find(__x); } //@} //@{ /** * @brief Finds the beginning of a subsequence matching given key. * @param x Key to be located. * @return Iterator pointing to first element equal to or greater * than key, or end(). * * This function returns the first element of a subsequence of elements * that matches the given key. If unsuccessful it returns an iterator * pointing to the first element that has a greater value than given key * or end() if no such element exists. */ iterator lower_bound(const key_type& __x) { return _M_t.lower_bound(__x); } const_iterator lower_bound(const key_type& __x) const { return _M_t.lower_bound(__x); } //@} //@{ /** * @brief Finds the end of a subsequence matching given key. * @param x Key to be located. * @return Iterator pointing to the first element * greater than key, or end(). */ iterator upper_bound(const key_type& __x) { return _M_t.upper_bound(__x); } const_iterator upper_bound(const key_type& __x) const { return _M_t.upper_bound(__x); } //@} //@{ /** * @brief Finds a subsequence matching given key. * @param x Key to be located. * @return Pair of iterators that possibly points to the subsequence * matching given key. * * This function is equivalent to * @code * std::make_pair(c.lower_bound(val), * c.upper_bound(val)) * @endcode * (but is faster than making the calls separately). * * This function probably only makes sense for multisets. */ pair<iterator,iterator> equal_range(const key_type& __x) { return _M_t.equal_range(__x); } pair<const_iterator,const_iterator> equal_range(const key_type& __x) const { return _M_t.equal_range(__x); } //@} template<class _K1, class _C1, class _A1> friend bool operator== (const set<_K1,_C1,_A1>&, const set<_K1,_C1,_A1>&); template<class _K1, class _C1, class _A1> friend bool operator< (const set<_K1,_C1,_A1>&, const set<_K1,_C1,_A1>&); }; /** * @brief Set equality comparison. * @param x A %set. * @param y A %set of the same type as @a x. * @return True iff the size and elements of the sets are equal. * * This is an equivalence relation. It is linear in the size of the sets. * Sets are considered equivalent if their sizes are equal, and if * corresponding elements compare equal. */ template<class _Key, class _Compare, class _Alloc> inline bool operator==(const set<_Key,_Compare,_Alloc>& __x, const set<_Key,_Compare,_Alloc>& __y) { return __x._M_t == __y._M_t; } /** * @brief Set ordering relation. * @param x A %set. * @param y A %set of the same type as @a x. * @return True iff @a x is lexicographically less than @a y. * * This is a total ordering relation. It is linear in the size of the * maps. The elements must be comparable with @c <. * * See std::lexicographical_compare() for how the determination is made. */ template<class _Key, class _Compare, class _Alloc> inline bool operator<(const set<_Key,_Compare,_Alloc>& __x, const set<_Key,_Compare,_Alloc>& __y) { return __x._M_t < __y._M_t; } /// Returns !(x == y). template<class _Key, class _Compare, class _Alloc> inline bool operator!=(const set<_Key,_Compare,_Alloc>& __x, const set<_Key,_Compare,_Alloc>& __y) { return !(__x == __y); } /// Returns y < x. template<class _Key, class _Compare, class _Alloc> inline bool operator>(const set<_Key,_Compare,_Alloc>& __x, const set<_Key,_Compare,_Alloc>& __y) { return __y < __x; } /// Returns !(y < x) template<class _Key, class _Compare, class _Alloc> inline bool operator<=(const set<_Key,_Compare,_Alloc>& __x, const set<_Key,_Compare,_Alloc>& __y) { return !(__y < __x); } /// Returns !(x < y) template<class _Key, class _Compare, class _Alloc> inline bool operator>=(const set<_Key,_Compare,_Alloc>& __x, const set<_Key,_Compare,_Alloc>& __y) { return !(__x < __y); } /// See std::set::swap(). template<class _Key, class _Compare, class _Alloc> inline void swap(set<_Key,_Compare,_Alloc>& __x, set<_Key,_Compare,_Alloc>& __y) { __x.swap(__y); }} // namespace std#endif /* _SET_H */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -