⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 stl_set.h

📁 openRisc2000编译链接器等,用于i386 cygwin
💻 H
📖 第 1 页 / 共 2 页
字号:
      /**       *  @brief Attempts to insert an element into the %set.       *  @param  x  Element to be inserted.       *  @return  A pair, of which the first element is an iterator that points       *           to the possibly inserted element, and the second is a bool       *           that is true if the element was actually inserted.       *       *  This function attempts to insert an element into the %set.  A %set       *  relies on unique keys and thus an element is only inserted if it is       *  not already present in the %set.       *       *  Insertion requires logarithmic time.       */      pair<iterator,bool>      insert(const value_type& __x)      {	pair<typename _Rep_type::iterator, bool> __p = _M_t.insert_unique(__x);	return pair<iterator, bool>(__p.first, __p.second);      }      /**       *  @brief Attempts to insert an element into the %set.       *  @param  position  An iterator that serves as a hint as to where the       *                    element should be inserted.       *  @param  x  Element to be inserted.       *  @return  An iterator that points to the element with key of @a x (may       *           or may not be the element passed in).       *       *  This function is not concerned about whether the insertion took place,       *  and thus does not return a boolean like the single-argument insert()       *  does.  Note that the first parameter is only a hint and can       *  potentially improve the performance of the insertion process.  A bad       *  hint would cause no gains in efficiency.       *       *  See http://gcc.gnu.org/onlinedocs/libstdc++/23_containers/howto.html#4       *  for more on "hinting".       *       *  Insertion requires logarithmic time (if the hint is not taken).       */      iterator      insert(iterator __position, const value_type& __x)      {	typedef typename _Rep_type::iterator _Rep_iterator;	return _M_t.insert_unique((_Rep_iterator&)__position, __x);      }      /**       *  @brief A template function that attemps to insert a range of elements.       *  @param  first  Iterator pointing to the start of the range to be       *                 inserted.       *  @param  last  Iterator pointing to the end of the range.       *       *  Complexity similar to that of the range constructor.       */      template<class _InputIterator>      void      insert(_InputIterator __first, _InputIterator __last)      { _M_t.insert_unique(__first, __last); }      /**       *  @brief Erases an element from a %set.       *  @param  position  An iterator pointing to the element to be erased.       *       *  This function erases an element, pointed to by the given iterator,       *  from a %set.  Note that this function only erases the element, and       *  that if the element is itself a pointer, the pointed-to memory is not       *  touched in any way.  Managing the pointer is the user's responsibilty.       */      void      erase(iterator __position)      {	typedef typename _Rep_type::iterator _Rep_iterator;	_M_t.erase((_Rep_iterator&)__position);      }      /**       *  @brief Erases elements according to the provided key.       *  @param  x  Key of element to be erased.       *  @return  The number of elements erased.       *       *  This function erases all the elements located by the given key from       *  a %set.       *  Note that this function only erases the element, and that if       *  the element is itself a pointer, the pointed-to memory is not touched       *  in any way.  Managing the pointer is the user's responsibilty.       */      size_type      erase(const key_type& __x) { return _M_t.erase(__x); }      /**       *  @brief Erases a [first,last) range of elements from a %set.       *  @param  first  Iterator pointing to the start of the range to be       *                 erased.       *  @param  last  Iterator pointing to the end of the range to be erased.       *       *  This function erases a sequence of elements from a %set.       *  Note that this function only erases the element, and that if       *  the element is itself a pointer, the pointed-to memory is not touched       *  in any way.  Managing the pointer is the user's responsibilty.       */      void      erase(iterator __first, iterator __last)      {	typedef typename _Rep_type::iterator _Rep_iterator;	_M_t.erase((_Rep_iterator&)__first, (_Rep_iterator&)__last);      }      /**       *  Erases all elements in a %set.  Note that this function only erases       *  the elements, and that if the elements themselves are pointers, the       *  pointed-to memory is not touched in any way.  Managing the pointer is       *  the user's responsibilty.       */      void      clear()      { _M_t.clear(); }      // set operations:      /**       *  @brief  Finds the number of elements.       *  @param  x  Element to located.       *  @return  Number of elements with specified key.       *       *  This function only makes sense for multisets; for set the result will       *  either be 0 (not present) or 1 (present).       */      size_type      count(const key_type& __x) const      { return _M_t.find(__x) == _M_t.end() ? 0 : 1; }      // _GLIBCXX_RESOLVE_LIB_DEFECTS      // 214.  set::find() missing const overload      //@{      /**       *  @brief Tries to locate an element in a %set.       *  @param  x  Element to be located.       *  @return  Iterator pointing to sought-after element, or end() if not       *           found.       *       *  This function takes a key and tries to locate the element with which       *  the key matches.  If successful the function returns an iterator       *  pointing to the sought after element.  If unsuccessful it returns the       *  past-the-end ( @c end() ) iterator.       */      iterator      find(const key_type& __x)      { return _M_t.find(__x); }      const_iterator      find(const key_type& __x) const      { return _M_t.find(__x); }      //@}      //@{      /**       *  @brief Finds the beginning of a subsequence matching given key.       *  @param  x  Key to be located.       *  @return  Iterator pointing to first element equal to or greater       *           than key, or end().       *       *  This function returns the first element of a subsequence of elements       *  that matches the given key.  If unsuccessful it returns an iterator       *  pointing to the first element that has a greater value than given key       *  or end() if no such element exists.       */      iterator      lower_bound(const key_type& __x)      { return _M_t.lower_bound(__x); }      const_iterator      lower_bound(const key_type& __x) const      { return _M_t.lower_bound(__x); }      //@}      //@{      /**       *  @brief Finds the end of a subsequence matching given key.       *  @param  x  Key to be located.       *  @return Iterator pointing to the first element       *          greater than key, or end().       */      iterator      upper_bound(const key_type& __x)      { return _M_t.upper_bound(__x); }      const_iterator      upper_bound(const key_type& __x) const      { return _M_t.upper_bound(__x); }      //@}      //@{      /**       *  @brief Finds a subsequence matching given key.       *  @param  x  Key to be located.       *  @return  Pair of iterators that possibly points to the subsequence       *           matching given key.       *       *  This function is equivalent to       *  @code       *    std::make_pair(c.lower_bound(val),       *                   c.upper_bound(val))       *  @endcode       *  (but is faster than making the calls separately).       *       *  This function probably only makes sense for multisets.       */      pair<iterator,iterator>      equal_range(const key_type& __x)      { return _M_t.equal_range(__x); }      pair<const_iterator,const_iterator>      equal_range(const key_type& __x) const      { return _M_t.equal_range(__x); }      //@}      template<class _K1, class _C1, class _A1>        friend bool        operator== (const set<_K1,_C1,_A1>&, const set<_K1,_C1,_A1>&);      template<class _K1, class _C1, class _A1>        friend bool        operator< (const set<_K1,_C1,_A1>&, const set<_K1,_C1,_A1>&);    };  /**   *  @brief  Set equality comparison.   *  @param  x  A %set.   *  @param  y  A %set of the same type as @a x.   *  @return  True iff the size and elements of the sets are equal.   *   *  This is an equivalence relation.  It is linear in the size of the sets.   *  Sets are considered equivalent if their sizes are equal, and if   *  corresponding elements compare equal.  */  template<class _Key, class _Compare, class _Alloc>    inline bool    operator==(const set<_Key,_Compare,_Alloc>& __x,	       const set<_Key,_Compare,_Alloc>& __y)    { return __x._M_t == __y._M_t; }  /**   *  @brief  Set ordering relation.   *  @param  x  A %set.   *  @param  y  A %set of the same type as @a x.   *  @return  True iff @a x is lexicographically less than @a y.   *   *  This is a total ordering relation.  It is linear in the size of the   *  maps.  The elements must be comparable with @c <.   *   *  See std::lexicographical_compare() for how the determination is made.  */  template<class _Key, class _Compare, class _Alloc>    inline bool    operator<(const set<_Key,_Compare,_Alloc>& __x,	      const set<_Key,_Compare,_Alloc>& __y)    { return __x._M_t < __y._M_t; }  ///  Returns !(x == y).  template<class _Key, class _Compare, class _Alloc>    inline bool    operator!=(const set<_Key,_Compare,_Alloc>& __x,	       const set<_Key,_Compare,_Alloc>& __y)    { return !(__x == __y); }  ///  Returns y < x.  template<class _Key, class _Compare, class _Alloc>    inline bool    operator>(const set<_Key,_Compare,_Alloc>& __x,	      const set<_Key,_Compare,_Alloc>& __y)    { return __y < __x; }  ///  Returns !(y < x)  template<class _Key, class _Compare, class _Alloc>    inline bool    operator<=(const set<_Key,_Compare,_Alloc>& __x,	       const set<_Key,_Compare,_Alloc>& __y)    { return !(__y < __x); }  ///  Returns !(x < y)  template<class _Key, class _Compare, class _Alloc>    inline bool    operator>=(const set<_Key,_Compare,_Alloc>& __x,	       const set<_Key,_Compare,_Alloc>& __y)    { return !(__x < __y); }  /// See std::set::swap().  template<class _Key, class _Compare, class _Alloc>    inline void    swap(set<_Key,_Compare,_Alloc>& __x, set<_Key,_Compare,_Alloc>& __y)    { __x.swap(__y); }} // namespace std#endif /* _SET_H */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -