⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 stl_map.h

📁 openRisc2000编译链接器等,用于i386 cygwin
💻 H
📖 第 1 页 / 共 2 页
字号:
       *           to the possibly inserted pair, and the second is a bool that       *           is true if the pair was actually inserted.       *       *  This function attempts to insert a (key, value) %pair into the %map.       *  A %map relies on unique keys and thus a %pair is only inserted if its       *  first element (the key) is not already present in the %map.       *       *  Insertion requires logarithmic time.       */      pair<iterator,bool>      insert(const value_type& __x)      { return _M_t.insert_unique(__x); }      /**       *  @brief Attempts to insert a std::pair into the %map.       *  @param  position  An iterator that serves as a hint as to where the       *                    pair should be inserted.       *  @param  x  Pair to be inserted (see std::make_pair for easy creation of       *             pairs).       *  @return  An iterator that points to the element with key of @a x (may       *           or may not be the %pair passed in).       *       *  This function is not concerned about whether the insertion took place,       *  and thus does not return a boolean like the single-argument       *  insert() does.  Note that the first parameter is only a hint and can       *  potentially improve the performance of the insertion process.  A bad       *  hint would cause no gains in efficiency.       *       *  See http://gcc.gnu.org/onlinedocs/libstdc++/23_containers/howto.html#4       *  for more on "hinting".       *       *  Insertion requires logarithmic time (if the hint is not taken).       */      iterator      insert(iterator position, const value_type& __x)      { return _M_t.insert_unique(position, __x); }      /**       *  @brief A template function that attemps to insert a range of elements.       *  @param  first  Iterator pointing to the start of the range to be       *                 inserted.       *  @param  last  Iterator pointing to the end of the range.       *       *  Complexity similar to that of the range constructor.       */      template <typename _InputIterator>        void        insert(_InputIterator __first, _InputIterator __last)        { _M_t.insert_unique(__first, __last); }      /**       *  @brief Erases an element from a %map.       *  @param  position  An iterator pointing to the element to be erased.       *       *  This function erases an element, pointed to by the given iterator,       *  from a %map.  Note that this function only erases the element, and       *  that if the element is itself a pointer, the pointed-to memory is not       *  touched in any way.  Managing the pointer is the user's responsibilty.       */      void      erase(iterator __position)      { _M_t.erase(__position); }      /**       *  @brief Erases elements according to the provided key.       *  @param  x  Key of element to be erased.       *  @return  The number of elements erased.       *       *  This function erases all the elements located by the given key from       *  a %map.       *  Note that this function only erases the element, and that if       *  the element is itself a pointer, the pointed-to memory is not touched       *  in any way.  Managing the pointer is the user's responsibilty.       */      size_type      erase(const key_type& __x)      { return _M_t.erase(__x); }      /**       *  @brief Erases a [first,last) range of elements from a %map.       *  @param  first  Iterator pointing to the start of the range to be       *                 erased.       *  @param  last  Iterator pointing to the end of the range to be erased.       *       *  This function erases a sequence of elements from a %map.       *  Note that this function only erases the element, and that if       *  the element is itself a pointer, the pointed-to memory is not touched       *  in any way.  Managing the pointer is the user's responsibilty.       */      void      erase(iterator __first, iterator __last)      { _M_t.erase(__first, __last); }      /**       *  @brief  Swaps data with another %map.       *  @param  x  A %map of the same element and allocator types.       *       *  This exchanges the elements between two maps in constant time.       *  (It is only swapping a pointer, an integer, and an instance of       *  the @c Compare type (which itself is often stateless and empty), so it       *  should be quite fast.)       *  Note that the global std::swap() function is specialized such that       *  std::swap(m1,m2) will feed to this function.       */      void      swap(map& __x)      { _M_t.swap(__x._M_t); }      /**       *  Erases all elements in a %map.  Note that this function only erases       *  the elements, and that if the elements themselves are pointers, the       *  pointed-to memory is not touched in any way.  Managing the pointer is       *  the user's responsibilty.       */      void      clear()      { _M_t.clear(); }      // observers      /**       *  Returns the key comparison object out of which the %map was       *  constructed.       */      key_compare      key_comp() const      { return _M_t.key_comp(); }      /**       *  Returns a value comparison object, built from the key comparison       *  object out of which the %map was constructed.       */      value_compare      value_comp() const      { return value_compare(_M_t.key_comp()); }      // [23.3.1.3] map operations      /**       *  @brief Tries to locate an element in a %map.       *  @param  x  Key of (key, value) %pair to be located.       *  @return  Iterator pointing to sought-after element, or end() if not       *           found.       *       *  This function takes a key and tries to locate the element with which       *  the key matches.  If successful the function returns an iterator       *  pointing to the sought after %pair.  If unsuccessful it returns the       *  past-the-end ( @c end() ) iterator.       */      iterator      find(const key_type& __x)      { return _M_t.find(__x); }      /**       *  @brief Tries to locate an element in a %map.       *  @param  x  Key of (key, value) %pair to be located.       *  @return  Read-only (constant) iterator pointing to sought-after       *           element, or end() if not found.       *       *  This function takes a key and tries to locate the element with which       *  the key matches.  If successful the function returns a constant       *  iterator pointing to the sought after %pair. If unsuccessful it       *  returns the past-the-end ( @c end() ) iterator.       */      const_iterator      find(const key_type& __x) const      { return _M_t.find(__x); }      /**       *  @brief  Finds the number of elements with given key.       *  @param  x  Key of (key, value) pairs to be located.       *  @return  Number of elements with specified key.       *       *  This function only makes sense for multimaps; for map the result will       *  either be 0 (not present) or 1 (present).       */      size_type      count(const key_type& __x) const      { return _M_t.find(__x) == _M_t.end() ? 0 : 1; }      /**       *  @brief Finds the beginning of a subsequence matching given key.       *  @param  x  Key of (key, value) pair to be located.       *  @return  Iterator pointing to first element equal to or greater       *           than key, or end().       *       *  This function returns the first element of a subsequence of elements       *  that matches the given key.  If unsuccessful it returns an iterator       *  pointing to the first element that has a greater value than given key       *  or end() if no such element exists.       */      iterator      lower_bound(const key_type& __x)      { return _M_t.lower_bound(__x); }      /**       *  @brief Finds the beginning of a subsequence matching given key.       *  @param  x  Key of (key, value) pair to be located.       *  @return  Read-only (constant) iterator pointing to first element       *           equal to or greater than key, or end().       *       *  This function returns the first element of a subsequence of elements       *  that matches the given key.  If unsuccessful it returns an iterator       *  pointing to the first element that has a greater value than given key       *  or end() if no such element exists.       */      const_iterator      lower_bound(const key_type& __x) const      { return _M_t.lower_bound(__x); }      /**       *  @brief Finds the end of a subsequence matching given key.       *  @param  x  Key of (key, value) pair to be located.       *  @return Iterator pointing to the first element       *          greater than key, or end().       */      iterator      upper_bound(const key_type& __x)      { return _M_t.upper_bound(__x); }      /**       *  @brief Finds the end of a subsequence matching given key.       *  @param  x  Key of (key, value) pair to be located.       *  @return  Read-only (constant) iterator pointing to first iterator       *           greater than key, or end().       */      const_iterator      upper_bound(const key_type& __x) const      { return _M_t.upper_bound(__x); }      /**       *  @brief Finds a subsequence matching given key.       *  @param  x  Key of (key, value) pairs to be located.       *  @return  Pair of iterators that possibly points to the subsequence       *           matching given key.       *       *  This function is equivalent to       *  @code       *    std::make_pair(c.lower_bound(val),       *                   c.upper_bound(val))       *  @endcode       *  (but is faster than making the calls separately).       *       *  This function probably only makes sense for multimaps.       */      pair<iterator,iterator>      equal_range(const key_type& __x)      { return _M_t.equal_range(__x); }      /**       *  @brief Finds a subsequence matching given key.       *  @param  x  Key of (key, value) pairs to be located.       *  @return  Pair of read-only (constant) iterators that possibly points       *           to the subsequence matching given key.       *       *  This function is equivalent to       *  @code       *    std::make_pair(c.lower_bound(val),       *                   c.upper_bound(val))       *  @endcode       *  (but is faster than making the calls separately).       *       *  This function probably only makes sense for multimaps.       */      pair<const_iterator,const_iterator>      equal_range(const key_type& __x) const      { return _M_t.equal_range(__x); }      template <typename _K1, typename _T1, typename _C1, typename _A1>        friend bool        operator== (const map<_K1,_T1,_C1,_A1>&,		    const map<_K1,_T1,_C1,_A1>&);      template <typename _K1, typename _T1, typename _C1, typename _A1>        friend bool        operator< (const map<_K1,_T1,_C1,_A1>&,		   const map<_K1,_T1,_C1,_A1>&);    };  /**   *  @brief  Map equality comparison.   *  @param  x  A %map.   *  @param  y  A %map of the same type as @a x.   *  @return  True iff the size and elements of the maps are equal.   *   *  This is an equivalence relation.  It is linear in the size of the   *  maps.  Maps are considered equivalent if their sizes are equal,   *  and if corresponding elements compare equal.  */  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>    inline bool    operator==(const map<_Key,_Tp,_Compare,_Alloc>& __x,               const map<_Key,_Tp,_Compare,_Alloc>& __y)    { return __x._M_t == __y._M_t; }  /**   *  @brief  Map ordering relation.   *  @param  x  A %map.   *  @param  y  A %map of the same type as @a x.   *  @return  True iff @a x is lexicographically less than @a y.   *   *  This is a total ordering relation.  It is linear in the size of the   *  maps.  The elements must be comparable with @c <.   *   *  See std::lexicographical_compare() for how the determination is made.  */  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>    inline bool    operator<(const map<_Key,_Tp,_Compare,_Alloc>& __x,              const map<_Key,_Tp,_Compare,_Alloc>& __y)    { return __x._M_t < __y._M_t; }  /// Based on operator==  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>    inline bool    operator!=(const map<_Key,_Tp,_Compare,_Alloc>& __x,               const map<_Key,_Tp,_Compare,_Alloc>& __y)    { return !(__x == __y); }  /// Based on operator<  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>    inline bool    operator>(const map<_Key,_Tp,_Compare,_Alloc>& __x,              const map<_Key,_Tp,_Compare,_Alloc>& __y)    { return __y < __x; }  /// Based on operator<  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>    inline bool    operator<=(const map<_Key,_Tp,_Compare,_Alloc>& __x,               const map<_Key,_Tp,_Compare,_Alloc>& __y)    { return !(__y < __x); }  /// Based on operator<  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>    inline bool    operator>=(const map<_Key,_Tp,_Compare,_Alloc>& __x,               const map<_Key,_Tp,_Compare,_Alloc>& __y)    { return !(__x < __y); }  /// See std::map::swap().  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>    inline void    swap(map<_Key,_Tp,_Compare,_Alloc>& __x, map<_Key,_Tp,_Compare,_Alloc>& __y)    { __x.swap(__y); }} // namespace std#endif /* _MAP_H */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -