📄 eval_svm.c
字号:
/* Copyright 2001, 2002, 2003 Yann Guermeur and Andre Elisseeff *//* This program is free software; you can redistribute it and/or modify *//* it under the terms of the GNU General Public License as published by *//* the Free Software Foundation; either version 2 of the License, or *//* (at your option) any later version. *//* This program is distributed in the hope that it will be useful, *//* but WITHOUT ANY WARRANTY; without even the implied warranty of *//* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *//* GNU General Public License for more details. *//* You should have received a copy of the GNU General Public License *//* along with this program; if not, write to the Free Software *//* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA *//*----------------------------------------------------------------------------*//* Name : eval_SVM.c *//* Version : 1.0 *//* Creation : 04/30/00 *//* Last update : 06/30/08 *//* Subject : Implementation of a M-SVM *//* Module : M-SVM used in test *//* Author : Yann Guermeur Yann.Guermeur@loria.fr *//*----------------------------------------------------------------------------*/#include <stdio.h>#include <string.h>#include <stdlib.h>#include <math.h>#include <ctype.h>#include "algebre.h"#include "biblio.h"#define true 1#define false 0#define inf(a,b) ((a)<=(b)?(a):(b))#define sup(a,b) ((a)<=(b)?(b):(a))#define taille 81#define tres_grand 1e6#define tres_petit 1e-4#define pas 10FILE *fs, *fc;char choice='y';long nature_kernel=0, *y_app, *y_test,Q=0, i, j, k, l, dim_input, nb_data_app=0, nb_data_test=0, y_i, y_j,bad_b = false;char fichier_app[taille], fichier_alpha[taille], fichier_SV[taille],fichier_test[taille], fichier_hyp[taille], commande[taille],conf[taille], fichier_fichcom[taille], fichier_resultat[taille],*chaine_app = "apprentissage",*chaine_test = "test";double **X_app, **X_test, **nb_sup_vect, R_emp=0.0,**alpha, **delta_b_SVM, *b_SVM, C=0.0, **sup_vect, step=1e-1, partiel,primal=0.0, dual=0.0, Q_form_dual=0.0, **gradient, negligeable, max_alpha=0.0,**mat_conf, cost=0.0, *best_b_SVM, R_emp_min=0.0, check=0,**H_alpha, **W, norm, **margin_vect, **nb_margin_vect, **radius;/* Functions included in this program */void caract_db();void read_data();void read_alpha();void check_feasible_sol();void compute_gradient();void check_sup_vect();void check_margin_vect();double fonction(long categorie, double *vecteur);void eval_training();void compute_W();void estime_b();void compute_outputs(double **X, long *y, char *chaine, long nb_data);void compute_obj_dual();void compute_obj_primal();void optimize_b();void standardize_b();void compute_boundaries();void compute_significance();void Pause(char *message);main(int argc, char *argv[]){strcpy(fichier_fichcom, argv[1]);system("clear");caract_db();read_data();read_alpha();check_feasible_sol();compute_gradient();check_sup_vect();check_margin_vect();if(nature_kernel == 1) compute_W();estime_b();eval_training();/* printf("\nFirst estimate of the training performance"); */compute_obj_dual();compute_obj_primal();if((max_alpha < C * (1.0 - tres_petit)) && (- Q_form_dual >= dual)) { for(k=1; k<=Q; k++) check += mat_conf[k][k]; if(check == nb_data_app) { bad_b = true; if(primal > -(1.5 * Q_form_dual)) printf("\nBeware, very poor estimates of the bias (primal = %lf)\n", primal); primal = - Q_form_dual; } }printf("\n*** Training performance\n");printf("\nDifference between the primal and the dual: %lf -> %lf",primal, dual);printf("\n(ratio %5.2lf\%)\n", 100.0 * dual / primal);display_stats(chaine_app, nb_data_app, nb_data_app, Q, mat_conf, cost);display_full_stats(chaine_app, nb_data_app, Q, mat_conf, cost);printf("Do you want vector b to be optimized [y/n]? ");choice = getc(stdin);if((choice == 'y') || (choice == 'Y')) { optimize_b(); printf("\nDifference between the primal and the dual: %lf -> %lf", primal, dual); printf("\n(ratio %5.2lf\%)\n", 100.0 * dual / primal); if(bad_b == true) printf("\nWith optimal values for the biases, the primal should be: %lf\n", - Q_form_dual); display_stats(chaine_app, nb_data_app, nb_data_app, Q, mat_conf, cost); display_full_stats(chaine_app, nb_data_app, Q, mat_conf, cost); Pause(""); }if((nature_kernel == 1) && (dim_input == 2) && (Q == 3) && (max_alpha > 0.0)) compute_boundaries();printf("\n*** Test performance\n");compute_outputs(X_test, y_test, chaine_test, nb_data_test);display_full_stats(chaine_test, nb_data_test, Q, mat_conf, cost);/* compute_significance(); */}void Pause(char *message){char c;static int n = 0;if(message!=NULL) printf("%s\n",message);printf("\a=> New Line to proceed...\n");n = read(0, &c, 1);while(c != '\n') n = read(0, &c, 1);return;}void standardize_b(){double sum_b = 0.0;for(k=1; k<=Q; k++) sum_b += b_SVM[k];sum_b /= Q;for(k=1; k<=Q; k++) b_SVM[k] -= sum_b;}void optimize_b(){long compteur, portion, class, Iteration;double *grid_index, *b_SVM_base;R_emp_min = R_emp;for(class=1; class<=Q; class++) best_b_SVM[class] = b_SVM[class];grid_index = (double *) calloc(Q+1, sizeof(double));b_SVM_base = (double *) calloc(Q+1, sizeof(double));grid_index[1] = 0.0;b_SVM_base[1] = 0.0;for(Iteration=1; Iteration <=10; Iteration++) { for(k=2; k<=Q; k++) b_SVM_base[k] = b_SVM[k] - (5.0 * step); for(compteur=0; compteur<(long)pow(10.0, (double)(Q-1)); compteur++) { /* printf("\nPosition in the grid: %6d\n", compteur); */ portion = compteur; for(class=2; class<=Q; class++) { grid_index[class] = (double) (portion / (long) pow(10.0, (double) (Q-class))); portion -= (long) (grid_index[class] * pow(10.0, (double) (Q-class))); } for(class=2; class<=Q; class++) b_SVM[class] = b_SVM_base[class] + (grid_index[class] * step); eval_training(); compute_obj_primal(); } for(class=1; class<=Q; class++) b_SVM[class] = best_b_SVM[class]; eval_training(); compute_obj_primal();/* scanf("%s", conf); sleep(2);*/ step /= 2.0; }standardize_b();printf("\nNew components of the b vector:\n");printf("\n");for(class=1; class<=Q; class++) printf("%11.6f\n", b_SVM[class]);}void caract_db(){if((fs=fopen(fichier_fichcom, "r"))==NULL) { printf("\nFile of parameters: %s cannot be open...\n", fichier_fichcom); exit(0); }fscanf(fs, "%d", &Q);mat_conf = matrix(Q,Q);fscanf(fs, "%d", &nature_kernel);fscanf(fs, "%lf", &C);negligeable = C * tres_petit;fscanf(fs, "%s", fichier_app);printf("\nThe file of training is: %s\n", fichier_app);fscanf(fs, "%s", fichier_test);printf("\nThe file of test is: %s\n", fichier_test);sleep(1);fscanf(fs, "%s", fichier_alpha);fscanf(fs, "%s", fichier_SV);fscanf(fs, "%s", fichier_resultat);fclose(fs);}void read_data(){long min_y = 1000;if((fs=fopen(fichier_app, "r"))==NULL) { printf("\nFile of data: %s cannot be open...\n", fichier_app); exit(0); }fscanf(fs, "%d", &nb_data_app);fscanf(fs, "%d", &dim_input);X_app = matrix(nb_data_app, dim_input);y_app = (long *) calloc(nb_data_app+1, sizeof(long));for(i=1; i<=nb_data_app; i++) { for(j=1; j<=dim_input; j++) fscanf(fs, "%lf", &X_app[i][j]); fscanf(fs, "%lf", &partiel); y_app[i] = (long) partiel; if(y_app[i] < min_y) min_y = y_app[i]; }fclose(fs);if((fs=fopen(fichier_test, "r"))==NULL) { printf("\nFile of data: %s cannot be open...\n", fichier_test); exit(0); }fscanf(fs, "%d", &nb_data_test);fscanf(fs, "%d", &dim_input);X_test = matrix(nb_data_test, dim_input);y_test = (long *) calloc(nb_data_test+1, sizeof(long));for(i=1; i<=nb_data_test; i++) { for(j=1; j<=dim_input; j++) fscanf(fs, "%lf", &X_test[i][j]); fscanf(fs, "%lf", &partiel); y_test[i] = (long) partiel; if(y_test[i] < min_y) min_y = y_test[i]; }fclose(fs);if(min_y == 0) { printf("\nStandardizing the coding of the categories...\n"); sleep(2); for(i=1; i<=nb_data_app; i++) y_app[i]++; for(i=1; i<=nb_data_test; i++) y_test[i]++; }printf("\nThe files of training and test data have been read...\n");sleep(1);}void read_alpha(){max_alpha = 0.0;if((fs=fopen(fichier_alpha, "r"))==NULL) { printf("\nFile of dual variables: %s cannot be open...\n", fichier_alpha); exit(0); }alpha = matrix(nb_data_app, Q);for(i=1; i<=nb_data_app; i++) for(k=1; k<=Q; k++) { fscanf(fs, "%lf", &alpha[i][k]); if((alpha[i][k] != 0.0) && (k == y_app[i])) { printf("\nEx. %d: pb. with the dummy variables...\n\n", i); exit(0); } if(alpha[i][k] > max_alpha) max_alpha = alpha[i][k]; }fclose(fs);printf("\nThe maximum value among the dual variables is: %lf\n", max_alpha);sleep(2);}void check_feasible_sol(){double *constraints;for(i=1; i<=nb_data_app; i++) for(k=1; k<=Q; k++) if((alpha[i][k] < 0.0) || (alpha[i][k] > C)) { printf("\nNo feasible solution: alpha[%d][%d] = %lf\n\n", i, k, alpha[i][k]); exit(0); } constraints = calloc(Q+1, sizeof(double));for(k=1; k<=Q; k++) constraints[k] = 0.0;for(i=1; i<=nb_data_app; i++) for(k=1; k<=Q; k++) { if(y_app[i] == k) for(l=1; l<=Q; l++) constraints[k] -= alpha[i][l]; else constraints[k] += alpha[i][k]; }printf("\nSatisfaction of the equality constraints:\n\n");for(k=1; k<=Q; k++) printf("%11.8f\n", constraints[k]);norm = 0.0;for(k=1; k<=Q; k++) norm += constraints[k] * constraints[k];norm = sqrt(norm);if(norm >= 1e-4) { printf("\nLarge deviation of the equality constraints...\n"); exit(0); }sprintf(commande, "cp %s Feasible/.", fichier_alpha);system(commande);}void compute_gradient(){gradient = matrix(nb_data_app, Q);H_alpha = matrix(nb_data_app, Q);printf("\nStart of the gradient computation...\n");for(i=1; i<=nb_data_app; i++) { if((i%100) == 0) printf("\n%9d", i); y_i = y_app[i]; for(k=1; k<=Q; k++) { H_alpha[i][k] = 0.0; if(k != y_i) { for(j=1; j<=nb_data_app; j++)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -