📄 matrix.h
字号:
for(jj = 0; jj < nNumCols; jj++)
printf("%f + %f i",matResult[ii][jj].m_re, matResult[ii][jj].m_im);
printf("\n");
}
printf("now do the truncting\n");
//after truncting
nRet = FFT(matSource,matResult, 6);
if(nRet)
return nRet;
nNumCols = matResult.GetNumCols();
nNumRows = matResult.GetNumRows();
for( ii = 0; ii < nNumRows; ii++)
{
for(jj = 0; jj < nNumCols; jj++)
printf("%f + %fi ",matResult[ii][jj].m_re, matResult[ii][jj].m_im);
printf("\n");
}
return nRet;
}
Parameters:
matSource:The data source matrix
matIFFT2Result: The matrix containing the 1 dimension inverse FFT results
nColProcess:The number of columns user provided. if it is -1, there is no padding
or truncating. if it is more than the size of the matrix, it will pad zero to meet the size
if less than, it will truncate the data matrix.
Return:
If succeed, it will return 0; Otherwise it returns error indications.
Error:
-1: Provided column number or row number must be -1 or positve integer
-2: The data source matrix is empty
-3: When calling member function, it fails.
-4: When calling GetReal or GetImage member function of matrix class, it failed.
Nag Error:
11: The coloumn or the row size of matrix is less then 1;
73: System failed to allocate memory
*/
// ER 01/29/03 QA70_3802 ADD_VECTOR_FFT_IFFT
int IFFT(matrix<complex>& matSource, matrix<complex>& matFFTResult, int nColProcess = -1);
/** >Analysis
This function performs 1-dimensional Fast Fourier Transform on data in a complex vector.
Remarks:
Data vector should be of type complex. If user have the data vector in integer or double form,
user should first transform it or copy it to a complex vector.
This function in turn calls the matrix-based FFT function.
Example:
This example computes the 1-dimensional Fast Fourier Transform on a complex vector
void FFT_test()
{
vector vR = { 1,2.5,3.5,2,1.0,2.3 };
vector vI = { 1,0.5,1.0,0.8,3.1,0.3 };
vector <complex> vC(vR, vI), vResult(vC.GetSize());
//tedt 1d fft function on data in a complex vector
int Err = FFT(vC, vResult);
if ( 0 != Err )
{
ASSERT(false);
printf("one-dimension FFT fails\n");
}
else
{
for(int ii = 0; ii < vResult.GetSize(); ii++)
{
printf("(%f, %fi) ",vResult[ii].m_re,vResult[ii].m_im);
printf("\n");
}
}
}
The output is as following:
(5.021454, 2.735264i)
(-1.018762, -1.546554i)
(0.139563, 0.547811i)
(-0.530723, 1.428869i)
(-1.486782, -1.078534i)
(0.324740, 0.362634i)
Parameters:
vecSource: The data source vector
vecFFTResult: The vector containing the 1-dimensional FFT result
Return:
If succeed, it will return 0; Otherwise it returns error indications.
Error:
-5: source vector is of zero length
n: other error codes returned by matrix-based FFT function
*/
// ER 01/29/03 QA70_3802 ADD_VECTOR_FFT_IFFT
int FFT(vector<complex>& vecSource, vector<complex>& vecFFTResult);
/** >Analysis
This function performs 1-dimensional inverse Fast Fourier Transform on data in a complex vector.
Remarks:
Data vector should be of type complex. If user have the data vector in integer or double form,
user should first transform it or copy it to a complex vector.
This function in turn calls the matrix-based FFT function.
Example:
int test_IFFT()
{
vector vR = { 1,2.5,3.5,2,1.0,2.3 };
vector vI = { 1,0.5,1.0,0.8,3.1,0.3 };
vector <complex> vC(vR, vI), vResult(vC.GetSize());
//tedt 1d ifft function on data in a complex vector
int Err = IFFT(vC, vResult);
if ( 0 != Err )
{
ASSERT(false);
printf("one-dimension IFFT fails\n");
}
else
{
for(int ii = 0; ii < vResult.GetSize(); ii++)
{
printf("(%f, %fi) ",vResult[ii].m_re,vResult[ii].m_im);
printf("\n");
}
}
}
The output is as following:
(5.021454, 2.735264i)
(0.324740, 0.362634i)
(-1.486782, -1.078534i)
(-0.530723, 1.428869i)
(0.139563, 0.547811i)
(-1.018762, -1.546554i)
Parameters:
vecSource:The data source vector
vecIFFTResult: The vector containing the 1-dimensional inverse FFT results
Return:
If succeed, it will return 0; Otherwise it returns error indications.
Error:
-5: source vector is of zero length
n: other error codes returned by matrix-based FFT function
*/
int IFFT(vector<complex>& vecSource, vector<complex>& vecFFTResult);
/** >Analysis
These four functions are used to do the singular value decomposition. matSource = matU* matS* matV'
Example:
int test_SVD()
{
matrix matData= { { 2, 2.5, 2.5}, {2.0, 2.5, 2.5}, {1.6, -0.4, 2.8}, {2.0, -0.5, 0.5}, {1.2, -0.3, -2.9}};
printf("The source data\n");
int nNumCols = matData.GetNumCols();
int nNumRows = matData.GetNumRows();
int ii, jj;
for( ii = 0; ii < nNumRows; ii++)
{
for(jj = 0; jj < nNumCols; jj++)
printf("%f ",matData[ii][jj]);
printf("\n");
}
matrix matS;
printf("Find the singular value\n");
int nRet;
if(nRet = SVD(matData, matS))
return nRet;
nNumCols = matS.GetNumCols();
nNumRows = matS.GetNumRows();
for( ii = 0; ii < nNumRows; ii++)
{
for(jj = 0; jj < nNumCols; jj++)
printf("%f ",matS[ii][jj]);
printf("\n");
}
printf("Find the U and V\n");
matrix matU, matV;
if(nRet = SVD(matData, matS, matU, matV))
return nRet;
printf("U is\n");
nNumCols = matU.GetNumCols();
nNumRows = matU.GetNumRows();
for( ii = 0; ii < nNumRows; ii++)
{
for(jj = 0; jj < nNumCols; jj++)
printf("%f ",matU[ii][jj]);
printf("\n");
}
printf("V is \n");
nNumCols = matV.GetNumCols();
nNumRows = matV.GetNumRows();
for( ii = 0; ii < nNumRows; ii++)
{
for(jj = 0; jj < nNumCols; jj++)
printf("%f ",matV[ii][jj]);
printf("\n");
}
return nRet;
}
Parameters:
matSource: The m * n source data matrix
matS: The min(m, n) diaganol sigular matrix
matU: The left side m * m unitary matrix
matV: The right side n* n unitary matrix
return:
if succeed, it will return 0
*/
int SVD(matrix<complex>& matSource, matrix& matS, matrix<complex>& matU, matrix<complex>& matV);
/** >Analysis
*/
int SVD(matrix<complex>& matSource, matrix<complex>& matS);
/** >Analysis
*/
int SVD(matrix& matSource, matrix& matS);
/** >Analysis
*/
int SVD(matrix& matSource, matrix& matS, matrix& matU, matrix& matV);
/** >Analysis
These four functions will give the trace of a matrix
Remarks:
we do not support every matrix type.
Example:
int test_Trace()
{
matrix matSource = {{1,2,3},{5,6,7},{9,10,11}};
printf("the source matrix\n");
int ii, jj;
int nNumCols = matSource.GetNumCols();
int nNumRows = matSource.GetNumRows();
for(ii = 0; ii < nNumRows; ii++)
{
for(jj = 0; jj < nNumCols; jj++)
printf("%f ",matSource[ii][jj]);
printf("\n");
}
int nRet;
double dTrace;
if(nRet = Trace(matSource, dTrace))
return nRet;
printf("The trace is: %f",dTrace);
return nRet;
}
Parameters:
matSource: The source matrix
nSum:
dSum:
cSum:
These are the variables to store the trace.
Return:
if succeed, it will return 0
*/
int Trace(matrix<short> & matSource, int & nSum);
/** >Analysis
*/
int Trace(matrix<int> & matSource, int & nSum);
/** >Analysis
*/
int Trace(matrix<double> & matSource, double & dSum);
/** >Analysis
*/
int Trace(matrix<complex> & matSource, complex & cSum);
//define a structure here to hold the summary results from the nag
typedef struct tagMatrixStats
{
int nMissingValue; //hold the number of missing value
double dMean;//hold the mean value;
double dSD; //hold the standard deviation
double dMax; //hold the maximun value;
double dMin; //hold the minimum value;
double dMedian;//hold the median value
double dLowHinge; //hold the lower hinge
double dUpHinge; //hold the upper hinge
double dWSum; //hold the sum of the weights
}MatrixStats;
#define MAT_ERR_WEIGHTS_DATA_SIZE_NOT_MATCH (-5)
/** >Statistics
This function will give the summary of the statistics of a source data contained in a matrix
Remarks:
If data does not have the weight, then the default weight 1 will be used
Example:
int test_Matrix_Stat_summary()
{
MatrixStats sMatStatsSum;
matrix mData = {{193.0, 215.0, 112.0, 161.0}, {92.0, 140.0, 38.0, 33.3}, {279.0,
249.0, 473.0, 339.0}, {60.0, 130.0, 20.0, 50.0}, {257.0, 284.0,
447.0, 52.0}, {67.0, 61.0, 150.0, 2220.0}};
matrix mWeights;
int nNumCols = mData.GetNumCols();
int nNumRows = mData.GetNumRows();
mWeights.SetSize(nNumRows, nNumCols);
mWeights = 1;
int nRet;
if(nRet = MatrixBasicStats(mData, sMatStatsSum, &mWeights))
return nRet;
printf("Number of cases is %d\n", sMatStatsSum.nMissingValue);
printf("And there is no weight\n");
printf("The input is following : x=\n");
for(int ii = 0; ii < nNumRows; ii++)
{
for(int jj = 0; jj < nNumCols; jj++)
printf("%10.1f", mData[ii][jj]);
printf("\n");
}
printf("\nsucess is%d\n", nRet);
if(nRet == 0)
{
printf("\nsucessfully call of the nag_summary_stats_1var function\n");
printf("the output is following:\n");
printf("No of missing cases %10d\n", sMatStatsSum.nMissingValue);
printf("mean %10.1f\n", sMatStatsSum.dMean);
printf("std devn %10.1f\n", sMatStatsSum.dSD);
printf("Minimun %10.1f\n", sMatStatsSum.dMin);
printf("Maximum %10.1f\n", sMatStatsSum.dMax);
printf("Sum of weights %10.1f\n", sMatStatsSum.dWSum);
}
else
{
printf(" \n There are some problems.");
}
return nRet;
}
Parameters:
mData: The Data Source
sMatStatsSum: The Results
mpWeights: The pointer to a weight matrix if any
Return:
Return 0 if succeed.
MAT_ERR_WEIGHTS_DATA_SIZE_NOT_MATCH: The weight matrix sizes do not match those of the source
*/
int MatrixBasicStats(matrix & mData, MatrixStats & sMatStatsSum, matrix * mpWeights = NULL);
#endif //_MATRIX_H
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -