📄 kernel_distance_bayes.m
字号:
function D = kernel_distance_bayes(g1, g2)
%
% Evidence of hypothesis, or Bayes normaliser, or probability of observation p(z|Z)
dim = size(g1.x, 1);
S = g1.P + g2.P;
Sc = chol(S)';
denom = (2*pi)^(dim/2) * prod(diag(Sc));
D = 0;
for i=1:size(g1.x,2)
for j=1:size(g2.x,2)
wij = evaluate_likelihood(g1.x(:,i)-g2.x(:,j), Sc, denom);
D = D + g1.w(i) * g2.w(j) * wij;
end
end
%
%
function w = evaluate_likelihood(v, Sc, denom)
%
vc = Sc\v;
numer = -0.5 * sum(vc.*vc, 1);
w = exp(numer) / denom;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -