📄 kf_update_w_simple.m
字号:
function [x,P,w]= KF_update_w_simple(x,P,v,R,H, logflag)
%function [x,P,w]= KF_update_w_simple(x,P,v,R,H, logflag)
%
% Calculate the Kalman Filter update given the prior state [x,P], the innovation, v, the
% observe uncertainty R, and the (linearised) observation model H. The weight, w, is the
% update normalising constant.
%
% This simple implementation is to check the validity of KF_update_w().
%
% Tim Bailey 2005.
S = H*P*H' + R; % innovation covariance
W = P*H'*inv(S); % Kalman gain
x = x + W*v;
P = P - W*S*W';
w = gauss_likelihood(v,S,logflag);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -