📄 contents.m
字号:
% Tim Bailey's Gaussian Mixture Model and Gaussian Kernel MatLab Utilities
% Version 1.0, 2006.
%
% http://www.acfr.usyd.edu.au/homepages/academic/tbailey/software/software.html
%
% approximate_gauss_by_gmm - Create a set of N gmms to approximate a single Gaussian
% approximate_gauss_by_kernels- Create a set of N kernels to approximate a single Gaussian
%
% covariance_intersect - Perform the covariance intersection of two Gaussians
% gauss_divide - Compute a/b, where a,b are Gaussians
% gauss_multiply - Multiply two Gaussians returning the result and the normalising weight
%
% gmm_addition - Compute c = a+b, where PDFs p(a),p(b) are gmms (equivalent to gmm_convolve)
% gmm_conditional -
% gmm_convolve - Convolve two Gaussian mixtures
% gmm_correlate - Cross-correlate two Gaussian mixtures
% gmm_covariance_intersect - "Generalised" CI for gmms
% gmm_display_1D -
% gmm_display_2D_contour -
% gmm_distance_bayes - Bayesian distance between two gmms - normalising constant after multiplication
% gmm_distance_bhattacharyya- Bhattacharyya distance between two gmms (Monte Carlo)
% gmm_distance_KLD - Kullback-Leibler divergence between two gmms (Monte Carlo)
% gmm_divide - Compute a/b, where a,b are gmms
% gmm_em -
% gmm_em_auto -
% gmm_evaluate - Evaluate gmm at discrete points
% gmm_marginal -
% gmm_multiply - Multiply two gmms
% gmm_normalise - Make integral of gmm equal to one and return normalising constant
% gmm_reduce_merge - Reduce number of gmm components by joining
% gmm_reduce_truncate - Reduce number of gmm components by eliminating those with small weights
% gmm_remove_zeros -
% gmm_samples - Generate samples from gmm
% gmm_subtract - Compute c = a-b, where PDFs p(a),p(b) are gmms (equivalent to gmm_correlate)
% gmm_to_gaussian - Compute mean and variance of gmm
% gmm_transform - Apply a linear transform to gmm, y = Hx
% gmm_update - Perform a Kalman update on a gmm PDF given a gmm likelihood
% gmm_update_linearised -
%
% kernel_convolve -
% kernel_distance_bayes -
% kernel_distance_bhattacharyya-
% kernel_distance_KLD -
% kernel_evaluate -
% kernel_multiply -
% kernel_normalise -
% kernel_reduce_merge -
% kernel_reduce_truncate -
% kernel_samples -
% kernel_to_gaussian -
% kernel_transform -
% kernel_update -
%
% KF_update_w - Kalman update that also returns the normalising weight of the multiplication
% KF_update_w_simple - Same as KF_update_w but simpler implementation
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -