⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 misc.c

📁 Minix3.11的源码。[MINIX 3是一个为高可靠性应用而设计的自由且简洁的类UNIX系统。]
💻 C
字号:
/* This file contains a collection of miscellaneous procedures.  Some of them * perform simple system calls.  Some others do a little part of system calls * that are mostly performed by the Memory Manager. * * The entry points into this file are *   do_dup:	  perform the DUP system call *   do_fcntl:	  perform the FCNTL system call *   do_sync:	  perform the SYNC system call *   do_fsync:	  perform the FSYNC system call *   do_reboot:	  sync disks and prepare for shutdown *   do_fork:	  adjust the tables after MM has performed a FORK system call *   do_exec:	  handle files with FD_CLOEXEC on after MM has done an EXEC *   do_exit:	  a process has exited; note that in the tables *   do_set:	  set uid or gid for some process *   do_revive:	  revive a process that was waiting for something (e.g. TTY) *   do_svrctl:	  file system control *   do_getsysinfo:	request copy of FS data structure */#include "fs.h"#include <fcntl.h>#include <unistd.h>	/* cc runs out of memory with unistd.h :-( */#include <minix/callnr.h>#include <minix/com.h>#include <sys/svrctl.h>#include "buf.h"#include "file.h"#include "fproc.h"#include "inode.h"#include "param.h"#include "super.h"/*===========================================================================* *				do_getsysinfo				     * *===========================================================================*/PUBLIC int do_getsysinfo(){  struct fproc *proc_addr;  vir_bytes src_addr, dst_addr;  size_t len;  int s;  switch(m_in.info_what) {  case SI_PROC_ADDR:  	proc_addr = &fproc[0];  	src_addr = (vir_bytes) &proc_addr;  	len = sizeof(struct fproc *);  	break;   case SI_PROC_TAB:  	src_addr = (vir_bytes) fproc;  	len = sizeof(struct fproc) * NR_PROCS;  	break;   case SI_DMAP_TAB:  	src_addr = (vir_bytes) dmap;  	len = sizeof(struct dmap) * NR_DEVICES;  	break;   default:  	return(EINVAL);  }  dst_addr = (vir_bytes) m_in.info_where;  if (OK != (s=sys_datacopy(SELF, src_addr, who, dst_addr, len)))  	return(s);  return(OK);}/*===========================================================================* *				do_dup					     * *===========================================================================*/PUBLIC int do_dup(){/* Perform the dup(fd) or dup2(fd,fd2) system call. These system calls are * obsolete.  In fact, it is not even possible to invoke them using the * current library because the library routines call fcntl().  They are * provided to permit old binary programs to continue to run. */  register int rfd;  register struct filp *f;  struct filp *dummy;  int r;  /* Is the file descriptor valid? */  rfd = m_in.fd & ~DUP_MASK;		/* kill off dup2 bit, if on */  if ((f = get_filp(rfd)) == NIL_FILP) return(err_code);  /* Distinguish between dup and dup2. */  if (m_in.fd == rfd) {			/* bit not on */	/* dup(fd) */	if ( (r = get_fd(0, 0, &m_in.fd2, &dummy)) != OK) return(r);  } else {	/* dup2(fd, fd2) */	if (m_in.fd2 < 0 || m_in.fd2 >= OPEN_MAX) return(EBADF);	if (rfd == m_in.fd2) return(m_in.fd2);	/* ignore the call: dup2(x, x) */	m_in.fd = m_in.fd2;		/* prepare to close fd2 */	(void) do_close();	/* cannot fail */  }  /* Success. Set up new file descriptors. */  f->filp_count++;  fp->fp_filp[m_in.fd2] = f;  return(m_in.fd2);}/*===========================================================================* *				do_fcntl				     * *===========================================================================*/PUBLIC int do_fcntl(){/* Perform the fcntl(fd, request, ...) system call. */  register struct filp *f;  int new_fd, r, fl;  long cloexec_mask;		/* bit map for the FD_CLOEXEC flag */  long clo_value;		/* FD_CLOEXEC flag in proper position */  struct filp *dummy;  /* Is the file descriptor valid? */  if ((f = get_filp(m_in.fd)) == NIL_FILP) return(err_code);  switch (m_in.request) {     case F_DUPFD:	/* This replaces the old dup() system call. */	if (m_in.addr < 0 || m_in.addr >= OPEN_MAX) return(EINVAL);	if ((r = get_fd(m_in.addr, 0, &new_fd, &dummy)) != OK) return(r);	f->filp_count++;	fp->fp_filp[new_fd] = f;	return(new_fd);     case F_GETFD:	/* Get close-on-exec flag (FD_CLOEXEC in POSIX Table 6-2). */	return( ((fp->fp_cloexec >> m_in.fd) & 01) ? FD_CLOEXEC : 0);     case F_SETFD:	/* Set close-on-exec flag (FD_CLOEXEC in POSIX Table 6-2). */	cloexec_mask = 1L << m_in.fd;	/* singleton set position ok */	clo_value = (m_in.addr & FD_CLOEXEC ? cloexec_mask : 0L);	fp->fp_cloexec = (fp->fp_cloexec & ~cloexec_mask) | clo_value;	return(OK);     case F_GETFL:	/* Get file status flags (O_NONBLOCK and O_APPEND). */	fl = f->filp_flags & (O_NONBLOCK | O_APPEND | O_ACCMODE);	return(fl);	     case F_SETFL:	/* Set file status flags (O_NONBLOCK and O_APPEND). */	fl = O_NONBLOCK | O_APPEND;	f->filp_flags = (f->filp_flags & ~fl) | (m_in.addr & fl);	return(OK);     case F_GETLK:     case F_SETLK:     case F_SETLKW:	/* Set or clear a file lock. */	r = lock_op(f, m_in.request);	return(r);     default:	return(EINVAL);  }}/*===========================================================================* *				do_sync					     * *===========================================================================*/PUBLIC int do_sync(){/* Perform the sync() system call.  Flush all the tables.  * The order in which the various tables are flushed is critical.  The * blocks must be flushed last, since rw_inode() leaves its results in * the block cache. */  register struct inode *rip;  register struct buf *bp;  /* Write all the dirty inodes to the disk. */  for (rip = &inode[0]; rip < &inode[NR_INODES]; rip++)	if (rip->i_count > 0 && rip->i_dirt == DIRTY) rw_inode(rip, WRITING);  /* Write all the dirty blocks to the disk, one drive at a time. */  for (bp = &buf[0]; bp < &buf[NR_BUFS]; bp++)	if (bp->b_dev != NO_DEV && bp->b_dirt == DIRTY) flushall(bp->b_dev);  return(OK);		/* sync() can't fail */}/*===========================================================================* *				do_fsync				     * *===========================================================================*/PUBLIC int do_fsync(){/* Perform the fsync() system call. For now, don't be unnecessarily smart. */  do_sync();  return(OK);}/*===========================================================================* *				do_reboot				     * *===========================================================================*/PUBLIC int do_reboot(){  /* Perform the FS side of the reboot call. */  int i;  struct super_block *sp;  struct inode dummy;  /* Only PM may make this call directly. */  if (who != PM_PROC_NR) return(EGENERIC);  /* Do exit processing for all leftover processes and servers. */  for (i = 0; i < NR_PROCS; i++) { m_in.slot1 = i; do_exit(); }  /* The root file system is mounted onto itself, which keeps it from being   * unmounted.  Pull an inode out of thin air and put the root on it.   */  put_inode(super_block[0].s_imount);  super_block[0].s_imount= &dummy;  dummy.i_count = 2;			/* expect one "put" */  /* Unmount all filesystems.  File systems are mounted on other file systems,   * so you have to pull off the loose bits repeatedly to get it all undone.   */  for (i= 0; i < NR_SUPERS; i++) {	/* Unmount at least one. */	for (sp= &super_block[0]; sp < &super_block[NR_SUPERS]; sp++) {		if (sp->s_dev != NO_DEV) (void) unmount(sp->s_dev);	}  }  return(OK);}/*===========================================================================* *				do_fork					     * *===========================================================================*/PUBLIC int do_fork(){/* Perform those aspects of the fork() system call that relate to files. * In particular, let the child inherit its parent's file descriptors. * The parent and child parameters tell who forked off whom. The file * system uses the same slot numbers as the kernel.  Only MM makes this call. */  register struct fproc *cp;  int i;  /* Only PM may make this call directly. */  if (who != PM_PROC_NR) return(EGENERIC);  /* Copy the parent's fproc struct to the child. */  fproc[m_in.child] = fproc[m_in.parent];  /* Increase the counters in the 'filp' table. */  cp = &fproc[m_in.child];  for (i = 0; i < OPEN_MAX; i++)	if (cp->fp_filp[i] != NIL_FILP) cp->fp_filp[i]->filp_count++;  /* Fill in new process id. */  cp->fp_pid = m_in.pid;  /* A child is not a process leader. */  cp->fp_sesldr = 0;  /* This child has not exec()ced yet. */  cp->fp_execced = 0;  /* Record the fact that both root and working dir have another user. */  dup_inode(cp->fp_rootdir);  dup_inode(cp->fp_workdir);  return(OK);}/*===========================================================================* *				do_exec					     * *===========================================================================*/PUBLIC int do_exec(){/* Files can be marked with the FD_CLOEXEC bit (in fp->fp_cloexec).  When * MM does an EXEC, it calls FS to allow FS to find these files and close them. */  register int i;  long bitmap;  /* Only PM may make this call directly. */  if (who != PM_PROC_NR) return(EGENERIC);  /* The array of FD_CLOEXEC bits is in the fp_cloexec bit map. */  fp = &fproc[m_in.slot1];		/* get_filp() needs 'fp' */  bitmap = fp->fp_cloexec;  if (bitmap) {    /* Check the file desriptors one by one for presence of FD_CLOEXEC. */    for (i = 0; i < OPEN_MAX; i++) {	  m_in.fd = i;	  if ( (bitmap >> i) & 01) (void) do_close();    }  }  /* This child has now exec()ced. */  fp->fp_execced = 1;  /* Reply to caller (PM) directly. */  reply(who, OK);  /* Check if this is a driver that can now be useful. */  dmap_proc_up(fp - fproc);  /* Suppress reply to caller (caller already replied to). */  return SUSPEND;}/*===========================================================================* *				do_exit					     * *===========================================================================*/PUBLIC int do_exit(){/* Perform the file system portion of the exit(status) system call. */  register int i, exitee, task;  register struct fproc *rfp;  register struct filp *rfilp;  register struct inode *rip;  dev_t dev;  /* Only PM may do the EXIT call directly. */  if (who != PM_PROC_NR) return(EGENERIC);  /* Nevertheless, pretend that the call came from the user. */  fp = &fproc[m_in.slot1];		/* get_filp() needs 'fp' */  exitee = m_in.slot1;  if (fp->fp_suspended == SUSPENDED) {	task = -fp->fp_task;	if (task == XPIPE || task == XPOPEN) susp_count--;	m_in.pro = exitee;	(void) do_unpause();	/* this always succeeds for MM */	fp->fp_suspended = NOT_SUSPENDED;  }  /* Loop on file descriptors, closing any that are open. */  for (i = 0; i < OPEN_MAX; i++) {	m_in.fd = i;	(void) do_close();  }  /* Release root and working directories. */  put_inode(fp->fp_rootdir);  put_inode(fp->fp_workdir);  fp->fp_rootdir = NIL_INODE;  fp->fp_workdir = NIL_INODE;  /* Check if any process is SUSPENDed on this driver.   * If a driver exits, unmap its entries in the dmap table.   * (unmapping has to be done after the first step, because the   * dmap table is used in the first step.)   */  unsuspend_by_proc(exitee);  dmap_unmap_by_proc(exitee);  /* If a session leader exits then revoke access to its controlling tty from   * all other processes using it.   */  if (!fp->fp_sesldr) {	fp->fp_pid = PID_FREE;  	return(OK);		/* not a session leader */  }  fp->fp_sesldr = FALSE;  if (fp->fp_tty == 0) {	fp->fp_pid = PID_FREE;  	return(OK);		/* no controlling tty */  }  dev = fp->fp_tty;  for (rfp = &fproc[0]; rfp < &fproc[NR_PROCS]; rfp++) {	if (rfp->fp_tty == dev) rfp->fp_tty = 0;	for (i = 0; i < OPEN_MAX; i++) {		if ((rfilp = rfp->fp_filp[i]) == NIL_FILP) continue;		if (rfilp->filp_mode == FILP_CLOSED) continue;		rip = rfilp->filp_ino;		if ((rip->i_mode & I_TYPE) != I_CHAR_SPECIAL) continue;		if ((dev_t) rip->i_zone[0] != dev) continue;		dev_close(dev);		rfilp->filp_mode = FILP_CLOSED;	}  }  /* Mark slot as free. */  fp->fp_pid = PID_FREE;  return(OK);}/*===========================================================================* *				do_set					     * *===========================================================================*/PUBLIC int do_set(){/* Set uid_t or gid_t field. */  register struct fproc *tfp;  /* Only PM may make this call directly. */  if (who != PM_PROC_NR) return(EGENERIC);  tfp = &fproc[m_in.slot1];  if (call_nr == SETUID) {	tfp->fp_realuid = (uid_t) m_in.real_user_id;	tfp->fp_effuid =  (uid_t) m_in.eff_user_id;  }  if (call_nr == SETGID) {	tfp->fp_effgid =  (gid_t) m_in.eff_grp_id;	tfp->fp_realgid = (gid_t) m_in.real_grp_id;  }  return(OK);}/*===========================================================================* *				do_revive				     * *===========================================================================*/PUBLIC int do_revive(){/* A driver, typically TTY, has now gotten the characters that were needed for  * a previous read.  The process did not get a reply when it made the call. * Instead it was suspended.  Now we can send the reply to wake it up.  This * business has to be done carefully, since the incoming message is from * a driver (to which no reply can be sent), and the reply must go to a process * that blocked earlier.  The reply to the caller is inhibited by returning the * 'SUSPEND' pseudo error, and the reply to the blocked process is done * explicitly in revive(). */  revive(m_in.REP_PROC_NR, m_in.REP_STATUS);  return(SUSPEND);		/* don't reply to the TTY task */}/*===========================================================================* *				do_svrctl				     * *===========================================================================*/PUBLIC int do_svrctl(){  switch (m_in.svrctl_req) {  case FSSIGNON: {	/* A server in user space calls in to manage a device. */	struct fssignon device;	int r, major;	if (fp->fp_effuid != SU_UID) return(EPERM);	/* Try to copy request structure to FS. */	if ((r = sys_datacopy(who, (vir_bytes) m_in.svrctl_argp,		FS_PROC_NR, (vir_bytes) &device,		(phys_bytes) sizeof(device))) != OK) 	    return(r);	/* Try to update device mapping. */	major = (device.dev >> MAJOR) & BYTE;	r=map_driver(major, who, device.style);	return(r);  }  case FSDEVUNMAP: {	struct fsdevunmap fdu;	int r, major;	/* Try to copy request structure to FS. */	if ((r = sys_datacopy(who, (vir_bytes) m_in.svrctl_argp,		FS_PROC_NR, (vir_bytes) &fdu,		(phys_bytes) sizeof(fdu))) != OK) 	    return(r);	major = (fdu.dev >> MAJOR) & BYTE;	r=map_driver(major, NONE, 0);	return(r);  }  default:	return(EINVAL);  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -