⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 rbf_mip.m

📁 RBFMIP is a package for training multi-instance RBF neural networks
💻 M
字号:
function Outputs=RBF_MIP(training_bags,test_bags,train_target,num_cluster,mu,bag_dist_measure,cluster_dist_measure)
%For details of RBF-MIP algorithm, please refer to reference [1]
%    Syntax
%
%       Outputs=RBF_MIP(training_bags,test_bags,train_target,num_cluster,mu,bag_dist_measure,cluster_dist_measure)
%
%    Description
%
%       RBFMIP takes,
%           training_bags        - An Mx1 cell, where the ith training bag is stored in training_bags{i,1}
%           test_bags            - An Nx1 cell, where the ith test bag is stored in test_bags{i,1}
%           train_target         - A QxM array, if the ith training bag belongs to the jth class, then train_target(j,i) equals +1, otherwise train_target(j,i) equals -1
%           num_cluster          - The number of clusters remaining in the first layer
%           mu                   - The mu parameter used to determine sigma
%           bag_dist_measure     - Mode for measuring the distance between bags: 1 for minimum Hausdorff distance; 2 for maximum Hausdorff distance
%           cluster_dist_measure - Mode for measuring the distance between clusters: 1 for minimum Hausdorff distance; 2 for maximum Hausdorff distance
%      and returns,
%           Outputs              - A QxN array, where the output of the ith test bag on the jth class is stored in Outputs{j,i}
%
%[1] M.-L. Zhang and Z.-H. Zhou. Adapting RBF neural networks for multi-instance learning. Neural Processing Letters, 2006, 23(1): 1-26.

     [num_class,num_training]=size(train_target);
     [num_test,tempvalue]=size(test_bags);
     
     clustering=cell(num_training,1);
     for i=1:num_training
         clustering{i,1}=i;
     end
     
     distance_matrix=zeros(num_training,num_training);
     for bags1=1:(num_training-1)
         if(mod(bags1,100)==0)
             disp(strcat('Computing distance for bags:',num2str(bags1)));
         end
         for bags2=(bags1+1):num_training
             if(bag_dist_measure==1)
                 distance_matrix(bags1,bags2)=minHausdorff(training_bags{bags1,1},training_bags{bags2,1});
             else
                 distance_matrix(bags1,bags2)=maxHausdorff(training_bags{bags1,1},training_bags{bags2,1});
             end
         end
     end
     distance_matrix=distance_matrix+distance_matrix';
     cluster_distance=tril(realmax*ones(num_training,num_training))+triu(distance_matrix,1);
     
     [clustering,cluster_distance]=base_opti(training_bags,clustering,num_cluster,distance_matrix,cluster_distance,cluster_dist_measure);
     
     matrix_fai=zeros(num_training,num_cluster+1);
     target=zeros(num_training,1);
     for i=1:num_training
         matrix_fai(i,1)=1;
         for j=1:num_cluster
             tempsize=size(clustering{j,1});
             num_bags=tempsize(2);
             temp_dist=zeros(1,num_bags);
             for k=1:num_bags
                 temp_dist(1,k)=distance_matrix(i,clustering{j,1}(1,k));
             end
             if (cluster_dist_measure==1)
                 matrix_fai(i,j+1)=min(min(temp_dist));
             else
                 dist1=max(min(temp_dist));
                 dist2=max(min(temp_dist'));
                 matrix_fai(i,j+1)=max(dist1,dist2);
             end
         end
     end
     
     average_dist=0;
     for i=1:(num_cluster-1)
         for j=(i+1):num_cluster
             average_dist=average_dist+cluster_distance(i,j);
         end
     end
     average_dist=(average_dist*2)/(num_cluster*(num_cluster-1));
     
     sigma=mu*average_dist;
     
     for i=1:num_training
         for j=1:num_cluster
             matrix_fai(i,j+1)=exp((-matrix_fai(i,j+1)^2)/(2*sigma^2)); %using the Gaussian kernel function
         end
     end
     
     test_data=zeros((num_cluster+1),num_test);
     for i=1:num_test
         input=ones(num_cluster+1,1);
         temp_cell=cell(1,1);
         temp_cell{1,1}=test_bags{i,1};
         for j=1:num_cluster
             kernel_j=[];
             tempsize=size(clustering{j,1});
             for k=1:tempsize(2)
                 kernel_j{k,1}=training_bags{clustering{j,1}(1,k),1};
             end
             input(j+1,1)=cluster_dist(temp_cell,kernel_j,1,tempsize(2),bag_dist_measure,cluster_dist_measure);
         end
         for m=1:num_cluster
             input(m+1,1)=exp((-input(m+1,1)^2)/(2*sigma^2));
         end
         test_data(:,i)=input;
     end
     
     Outputs=zeros(num_class,num_test);
     
     Lefthand=matrix_fai'*matrix_fai;
     [u,s,v]=svd(Lefthand);

     threshold=1e-5;
     diag=zeros(num_cluster+1,num_cluster+1);
     for i=1:(num_cluster+1)
         if (s(i,i)>threshold)
             diag(i,i)=1/s(i,i);
         end
     end
     
     for i=1:num_class         
         target=(train_target(i,:)==1)';        
         Righthand=matrix_fai'*target;
         Weights=(v*diag*(u'*Righthand))';
         for j=1:num_test
             Outputs(i,j)=Weights*test_data(:,j);
         end
     end

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -