📄 calcerror.m
字号:
%|
%| PURPOSE: Calculate the sum squared error between model and the data
%| when measurements are RSS (with log-normal errors).
function [sumError] = calcError(guessBlindLocs)
global refDevices; % number of reference devices
global blindDevices; % number of blind devices
global totalDevices; % the total number of devices
global linearRefLocs; % locations of the reference devices
global dhat; % estimated distance between devices based on the measured
% received power.
global funcEvals; % counter for number of function evaluations.
funcEvals = funcEvals + 1;
TINY = 1e-5;
x = [linearRefLocs(1:refDevices), guessBlindLocs(1:blindDevices)];
y = [linearRefLocs(refDevices+1:2*refDevices), guessBlindLocs(blindDevices+1:2*blindDevices)];
%x = [0 0 1 1 0.5 0.75];
%y = [0 1 1 0 0.75 0.5];
%| 1. For each blind device, add in the error that is calculated between
%| itself and each other blind or reference device.
sumError = 0;
for i = refDevices+1 : totalDevices,
j = 1:i-1;
sumError = sumError + sum( log( max(TINY, ((x(i)-x(j)).^2 + (y(i)-y(j)).^2)) ...
./ (dhat(i,j).^2) ).^2);
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -