📄 calcderror.m
字号:
%|
%| PURPOSE: Calculate the derivative of the error between the model and the data
%|
function [dError] = calcDError(guessBlindLocs)
global refDevices; % number of reference nodes
global blindDevices; % number of blind devices
global totalDevices; % the total number of devices
global linearRefLocs; % locations of the reference devices
global dhat; % estimated distance between devices based on the measured
% received power.
global dfuncEvals; % counter for number of function evaluations.
dfuncEvals = dfuncEvals + 1;
TINY = 1e-5;
x = [linearRefLocs(1:refDevices), guessBlindLocs(1:blindDevices)];
y = [linearRefLocs(refDevices+1:2*refDevices), guessBlindLocs(blindDevices+1:2*blindDevices)];
%x = [0 0 1 1 0.5 0.75];
%y = [0 1 1 0 0.75 0.5];
%| 1. Do the preliminary calculations here in order to save time in the
%| next loop.
for k = refDevices+1 : totalDevices,
l = [1:k-1];
modelDistSqr = max(TINY, (x(k)-x(l)).^2 + (y(k)-y(l)).^2);
commonTerm(k,l) = log( modelDistSqr ./ (dhat(k,l).^2)) ./ modelDistSqr;
end
commonTerm(:,totalDevices) = zeros(totalDevices,1);
%| 2. For each device, calculate the partial derivatives.
for k = refDevices+1 : totalDevices,
dFdx(k) = sum(commonTerm(k,1:k-1).*(x(k)-x(1:k-1))) + ...
sum(commonTerm(k+1:totalDevices, k)'.*(x(k)-x(k+1:totalDevices)));
dFdy(k) = sum(commonTerm(k,1:k-1).*(y(k)-y(1:k-1))) + ...
sum(commonTerm(k+1:totalDevices, k)'.*(y(k)-y(k+1:totalDevices)));
end
dError = [dFdx(refDevices+1:totalDevices), dFdy(refDevices+1:totalDevices)];
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -