⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 fft.cpp

📁 使用软件的实现EQ均衡器算法
💻 CPP
字号:
/**********************************************************************  FFT.cpp  Dominic Mazzoni  September 2000  This file contains a few FFT routines, including a real-FFT  routine that is almost twice as fast as a normal complex FFT,  and a power spectrum routine when you know you don't care  about phase information.  Some of this code was based on a free implementation of an FFT  by Don Cross, available on the web at:    http://www.intersrv.com/~dcross/fft.html  The basic algorithm for his code was based on Numerican Recipes  in Fortran.  I optimized his code further by reducing array  accesses, caching the bit reversal table, and eliminating  float-to-double conversions, and I added the routines to  calculate a real FFT and a real power spectrum.**********************************************************************///#include <wx/intl.h>//#include <stdlib.h>//#include <stdio.h>//#include <math.h>#include "stdafx.h"#include "FFT.h"#include <math.h>int **gFFTBitTable = NULL;const int MaxFastBits = 16;/* Declare Static functions */static int IsPowerOfTwo(int x);static int NumberOfBitsNeeded(int PowerOfTwo);static int ReverseBits(int index, int NumBits);static void InitFFT();int IsPowerOfTwo(int x){   if (x < 2)      return false;   if (x & (x - 1))             /* Thanks to 'byang' for this cute trick! */      return false;   return true;}int NumberOfBitsNeeded(int PowerOfTwo){   int i;   if (PowerOfTwo < 2) {      //fprintf(stderr, "Error: FFT called with size %d\n", PowerOfTwo);      exit(1);   }   for (i = 0;; i++)      if (PowerOfTwo & (1 << i))         return i;}int ReverseBits(int index, int NumBits){   int i, rev;   for (i = rev = 0; i < NumBits; i++) {      rev = (rev << 1) | (index & 1);      index >>= 1;   }   return rev;}void InitFFT(){   gFFTBitTable = new int *[MaxFastBits];   int len = 2;   for (int b = 1; b <= MaxFastBits; b++) {      gFFTBitTable[b - 1] = new int[len];      for (int i = 0; i < len; i++)         gFFTBitTable[b - 1][i] = ReverseBits(i, b);      len <<= 1;   }}inline int FastReverseBits(int i, int NumBits){   if (NumBits <= MaxFastBits)      return gFFTBitTable[NumBits - 1][i];   else      return ReverseBits(i, NumBits);}/* * Complex Fast Fourier Transform */void FFT(int NumSamples,         bool InverseTransform,         float *RealIn, float *ImagIn, float *RealOut, float *ImagOut){   int NumBits;                 /* Number of bits needed to store indices */   int i, j, k, n;   int BlockSize, BlockEnd;   double angle_numerator = 2.0 * M_PI;   double tr, ti;                /* temp real, temp imaginary */   if (!IsPowerOfTwo(NumSamples)) {      //fprintf(stderr, "%d is not a power of two\n", NumSamples);      exit(1);   }   if (!gFFTBitTable)      InitFFT();   if (InverseTransform)      angle_numerator = -angle_numerator;   NumBits = NumberOfBitsNeeded(NumSamples);   /*    **   Do simultaneous data copy and bit-reversal ordering into outputs...    */   for (i = 0; i < NumSamples; i++) {      j = FastReverseBits(i, NumBits);      RealOut[j] = RealIn[i];      ImagOut[j] = (ImagIn == NULL) ? 0.0 : ImagIn[i];   }   /*    **   Do the FFT itself...    */   BlockEnd = 1;   for (BlockSize = 2; BlockSize <= NumSamples; BlockSize <<= 1) {      double delta_angle = angle_numerator / (double) BlockSize;      double sm2 = sin(-2 * delta_angle);      double sm1 = sin(-delta_angle);      double cm2 = cos(-2 * delta_angle);      double cm1 = cos(-delta_angle);      double w = 2 * cm1;      double ar0, ar1, ar2, ai0, ai1, ai2;      for (i = 0; i < NumSamples; i += BlockSize) {         ar2 = cm2;         ar1 = cm1;         ai2 = sm2;         ai1 = sm1;         for (j = i, n = 0; n < BlockEnd; j++, n++) {            ar0 = w * ar1 - ar2;            ar2 = ar1;            ar1 = ar0;            ai0 = w * ai1 - ai2;            ai2 = ai1;            ai1 = ai0;            k = j + BlockEnd;            tr = ar0 * RealOut[k] - ai0 * ImagOut[k];            ti = ar0 * ImagOut[k] + ai0 * RealOut[k];            RealOut[k] = RealOut[j] - tr;            ImagOut[k] = ImagOut[j] - ti;            RealOut[j] += tr;            ImagOut[j] += ti;         }      }      BlockEnd = BlockSize;   }   /*      **   Need to normalize if inverse transform...    */   if (InverseTransform) {      float denom = (float) NumSamples;      for (i = 0; i < NumSamples; i++) {         RealOut[i] /= denom;         ImagOut[i] /= denom;      }   }}/* * Real Fast Fourier Transform * * This function was based on the code in Numerical Recipes in C. * In Num. Rec., the inner loop is based on a single 1-based array * of interleaved real and imaginary numbers.  Because we have two * separate zero-based arrays, our indices are quite different. * Here is the correspondence between Num. Rec. indices and our indices: * * i1  <->  real[i] * i2  <->  imag[i] * i3  <->  real[n/2-i] * i4  <->  imag[n/2-i] */void RealFFT(int NumSamples, float *RealIn, float *RealOut, float *ImagOut){   int Half = NumSamples / 2;   int i;   float theta = M_PI / Half;   float *tmpReal = new float[Half];   float *tmpImag = new float[Half];   for (i = 0; i < Half; i++) {      tmpReal[i] = RealIn[2 * i];      tmpImag[i] = RealIn[2 * i + 1];   }   FFT(Half, 0, tmpReal, tmpImag, RealOut, ImagOut);   float wtemp = float (sin(0.5 * theta));   float wpr = -2.0 * wtemp * wtemp;   float wpi = float (sin(theta));   float wr = 1.0 + wpr;   float wi = wpi;   int i3;   float h1r, h1i, h2r, h2i;   for (i = 1; i < Half / 2; i++) {      i3 = Half - i;      h1r = 0.5 * (RealOut[i] + RealOut[i3]);      h1i = 0.5 * (ImagOut[i] - ImagOut[i3]);      h2r = 0.5 * (ImagOut[i] + ImagOut[i3]);      h2i = -0.5 * (RealOut[i] - RealOut[i3]);      RealOut[i] = h1r + wr * h2r - wi * h2i;      ImagOut[i] = h1i + wr * h2i + wi * h2r;      RealOut[i3] = h1r - wr * h2r + wi * h2i;      ImagOut[i3] = -h1i + wr * h2i + wi * h2r;      wr = (wtemp = wr) * wpr - wi * wpi + wr;      wi = wi * wpr + wtemp * wpi + wi;   }   RealOut[0] = (h1r = RealOut[0]) + ImagOut[0];   ImagOut[0] = h1r - ImagOut[0];   delete[]tmpReal;   delete[]tmpImag;}/* * PowerSpectrum * * This function computes the same as RealFFT, above, but * adds the squares of the real and imaginary part of each * coefficient, extracting the power and throwing away the * phase. * * For speed, it does not call RealFFT, but duplicates some * of its code. */void PowerSpectrum(int NumSamples, float *In, float *Out){   int Half = NumSamples / 2;   int i;   float theta = M_PI / Half;   float *tmpReal = new float[Half];   float *tmpImag = new float[Half];   float *RealOut = new float[Half];   float *ImagOut = new float[Half];   for (i = 0; i < Half; i++) {      tmpReal[i] = In[2 * i];      tmpImag[i] = In[2 * i + 1];   }   FFT(Half, 0, tmpReal, tmpImag, RealOut, ImagOut);   float wtemp = float (sin(0.5 * theta));   float wpr = -2.0 * wtemp * wtemp;   float wpi = float (sin(theta));   float wr = 1.0 + wpr;   float wi = wpi;   int i3;   float h1r, h1i, h2r, h2i, rt, it;   for (i = 1; i < Half / 2; i++) {      i3 = Half - i;      h1r = 0.5 * (RealOut[i] + RealOut[i3]);      h1i = 0.5 * (ImagOut[i] - ImagOut[i3]);      h2r = 0.5 * (ImagOut[i] + ImagOut[i3]);      h2i = -0.5 * (RealOut[i] - RealOut[i3]);      rt = h1r + wr * h2r - wi * h2i;      it = h1i + wr * h2i + wi * h2r;      Out[i] = rt * rt + it * it;      rt = h1r - wr * h2r + wi * h2i;      it = -h1i + wr * h2i + wi * h2r;      Out[i3] = rt * rt + it * it;      wr = (wtemp = wr) * wpr - wi * wpi + wr;      wi = wi * wpr + wtemp * wpi + wi;   }   rt = (h1r = RealOut[0]) + ImagOut[0];   it = h1r - ImagOut[0];   Out[0] = rt * rt + it * it;   rt = RealOut[Half / 2];   it = ImagOut[Half / 2];   Out[Half / 2] = rt * rt + it * it;   delete[]tmpReal;   delete[]tmpImag;   delete[]RealOut;   delete[]ImagOut;}/* * Windowing Functions */int NumWindowFuncs(){   return 4;}const char *WindowFuncName(int whichFunction){   switch (whichFunction) {   default:   case 0:      return "Rectangular";   case 1:      return "Bartlett";   case 2:      return "Hamming";   case 3:      return "Hanning";   }}void WindowFunc(int whichFunction, int NumSamples, float *in){   int i;   if (whichFunction == 1) {      // Bartlett (triangular) window      for (i = 0; i < NumSamples / 2; i++) {         in[i] *= (i / (float) (NumSamples / 2));         in[i + (NumSamples / 2)] *=             (1.0 - (i / (float) (NumSamples / 2)));      }   }   if (whichFunction == 2) {      // Hamming      for (i = 0; i < NumSamples; i++)         in[i] *= 0.54 - 0.46 * cos(2 * M_PI * i / (NumSamples - 1));   }   if (whichFunction == 3) {      // Hanning      for (i = 0; i < NumSamples; i++)         in[i] *= 0.50 - 0.50 * cos(2 * M_PI * i / (NumSamples - 1));   }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -