📄 wigner4.m
字号:
function [tfd, t, f] = wigner4(x, fs)% wigner4 -- Compute samples of the type IV Wigner distribution.%% Usage% [tfd, t, f] = wigner4(x, fs)%% Inputs% x signal vector, must have an odd length% fs sampling frequency of x (optional, default is 1 sample/second)%% Outputs% tfd matrix containing the Wigner distribution of signal x. If x % has length N, then tfd will be N by N. (optional)% t vector of sampling times (optional)% f vector of frequency values (optional)%% If no output arguments are specified, then the Wigner distribution is % displayed using ptfd(tfd, t, f). Note that the Wigner distribution does not% exist for type IV signals with an even length. However, qwigner4 provides% a reasonable approximation. This was first derived by M.S. Richman, T.W.% Parks, and R.G. Shenoy (http://cam.cornell.edu/richman)% Copyright (C) -- see DiscreteTFDs/Copyright% specify defaultsx = x(:);N = length(x);if (floor(N/2) == N/2) error('x must have an odd length.');enderror(nargchk(1, 2, nargin));if (nargin < 2) fs = 1;endacf = zeros(N);acf(1,:) = (x.*conj(x)).';for tau = 2:2:(N+1)/2, acf(tau,:) = (conj(circ(x, (N+tau-1)/2)).*circ(x, (N-tau+1)/2)).'; acf(N-tau+2,:) = conj(acf(tau,:)); acf(tau+1,:) = (conj(circ(x, tau/2)).*circ(x, -tau/2)).'; acf(N-tau+1,:) = conj(acf(tau+1,:));endtfd = real(fft(acf));tfd = tfdshift(tfd)/N;t = 1/fs * (0:N-1);f = -fs/2:fs/N:fs/2;f = f(1:N);if (nargout == 0) ptfd(tfd, t, f); clear tfdend
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -