⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ximadsp.cpp

📁 信息隐藏中用于数字隐写的常用算法:LSB替换LSB匹配,包括随机的和排序的,以及对文件和文件夹进行操作,用CxImage类能快速读取各种格式的图象
💻 CPP
📖 第 1 页 / 共 4 页
字号:

	long nx,ny;

	CxImage tmp(*this,pSelection!=0,true,true);

	long xmin,xmax,ymin,ymax;
	if (pSelection){
		xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
		ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
	} else {
		xmin = ymin = 0;
		xmax = head.biWidth; ymax=head.biHeight;
	}

	for(long y=ymin; y<ymax; y++){
		info.nProgress = (long)(100*y/head.biHeight);
		if (info.nEscape) break;
		for(long x=xmin; x<xmax; x++){
#if CXIMAGE_SUPPORT_SELECTION
			if (SelectionIsInside(x,y))
#endif //CXIMAGE_SUPPORT_SELECTION
			{
				nx=x+(long)((rand()/(float)RAND_MAX - 0.5)*(radius*2));
				ny=y+(long)((rand()/(float)RAND_MAX - 0.5)*(radius*2));
				if (!IsInside(nx,ny)) {
					nx=x;
					ny=y;
				}
				if (head.biClrUsed==0){
					tmp.SetPixelColor(x,y,GetPixelColor(nx,ny));
				} else {
					tmp.SetPixelIndex(x,y,GetPixelIndex(nx,ny));
				}
#if CXIMAGE_SUPPORT_ALPHA
				tmp.AlphaSet(x,y,AlphaGet(nx,ny));
#endif //CXIMAGE_SUPPORT_ALPHA
			}
		}
	}
	Transfer(tmp);
	return true;
}
////////////////////////////////////////////////////////////////////////////////
/* <nipper> generates a 1-D convolution matrix to be used for each pass of 
* a two-pass gaussian blur.  Returns the length of the matrix.
*/
int CxImage::gen_convolve_matrix (float radius, float **cmatrix_p)
{
	int matrix_length;
	int matrix_midpoint;
	float* cmatrix;
	int i,j;
	float std_dev;
	float sum;
	
	/* we want to generate a matrix that goes out a certain radius
	* from the center, so we have to go out ceil(rad-0.5) pixels,
	* inlcuding the center pixel.  Of course, that's only in one direction,
	* so we have to go the same amount in the other direction, but not count
	* the center pixel again.  So we double the previous result and subtract
	* one.
	* The radius parameter that is passed to this function is used as
	* the standard deviation, and the radius of effect is the
	* standard deviation * 2.  It's a little confusing.
	*/
	radius = (float)fabs(radius) + 1.0f;
	
	std_dev = radius;
	radius = std_dev * 2;
	
	/* go out 'radius' in each direction */
	matrix_length = int (2 * ceil(radius-0.5) + 1);
	if (matrix_length <= 0) matrix_length = 1;
	matrix_midpoint = matrix_length/2 + 1;
	*cmatrix_p = new float[matrix_length];
	cmatrix = *cmatrix_p;
	
	/*  Now we fill the matrix by doing a numeric integration approximation
	* from -2*std_dev to 2*std_dev, sampling 50 points per pixel.
	* We do the bottom half, mirror it to the top half, then compute the
	* center point.  Otherwise asymmetric quantization errors will occur.
	*  The formula to integrate is e^-(x^2/2s^2).
	*/
	
	/* first we do the top (right) half of matrix */
	for (i = matrix_length/2 + 1; i < matrix_length; i++)
    {
		float base_x = i - (float)floor((float)(matrix_length/2)) - 0.5f;
		sum = 0;
		for (j = 1; j <= 50; j++)
		{
			if ( base_x+0.02*j <= radius ) 
				sum += (float)exp (-(base_x+0.02*j)*(base_x+0.02*j) / 
				(2*std_dev*std_dev));
		}
		cmatrix[i] = sum/50;
    }
	
	/* mirror the thing to the bottom half */
	for (i=0; i<=matrix_length/2; i++) {
		cmatrix[i] = cmatrix[matrix_length-1-i];
	}
	
	/* find center val -- calculate an odd number of quanta to make it symmetric,
	* even if the center point is weighted slightly higher than others. */
	sum = 0;
	for (j=0; j<=50; j++)
    {
		sum += (float)exp (-(0.5+0.02*j)*(0.5+0.02*j) /
			(2*std_dev*std_dev));
    }
	cmatrix[matrix_length/2] = sum/51;
	
	/* normalize the distribution by scaling the total sum to one */
	sum=0;
	for (i=0; i<matrix_length; i++) sum += cmatrix[i];
	for (i=0; i<matrix_length; i++) cmatrix[i] = cmatrix[i] / sum;
	
	return matrix_length;
}
////////////////////////////////////////////////////////////////////////////////
/* ----------------------- gen_lookup_table ----------------------- */
/* <nipper> generates a lookup table for every possible product of 0-255 and
each value in the convolution matrix.  The returned array is
indexed first by matrix position, then by input multiplicand (?)
value.
*/
float* CxImage::gen_lookup_table (float *cmatrix, int cmatrix_length)
{
	float* lookup_table = new float[cmatrix_length * 256];
	float* lookup_table_p = lookup_table;
	float* cmatrix_p      = cmatrix;
	
	for (int i=0; i<cmatrix_length; i++)
    {
		for (int j=0; j<256; j++)
		{
			*(lookup_table_p++) = *cmatrix_p * (float)j;
		}
		cmatrix_p++;
    }
	
	return lookup_table;
}
////////////////////////////////////////////////////////////////////////////////
/* <nipper> this function is written as if it is blurring a column at a time,
even though it can operate on rows, too.  There is no difference
in the processing of the lines, at least to the blur_line function. */
void CxImage::blur_line (float *ctable, float *cmatrix, int cmatrix_length, BYTE* cur_col, BYTE* dest_col, int y, long bytes)
{
	float scale;
	float sum;
	int i=0, j=0;
	int row;
	int cmatrix_middle = cmatrix_length/2;
	
	float *cmatrix_p;
	BYTE  *cur_col_p;
	BYTE  *cur_col_p1;
	BYTE  *dest_col_p;
	float *ctable_p;
	
	/* this first block is the same as the non-optimized version --
	* it is only used for very small pictures, so speed isn't a
	* big concern.
	*/
	if (cmatrix_length > y)
    {
		for (row = 0; row < y ; row++)
		{
			scale=0;
			/* find the scale factor */
			for (j = 0; j < y ; j++)
			{
				/* if the index is in bounds, add it to the scale counter */
				if ((j + cmatrix_length/2 - row >= 0) &&
					(j + cmatrix_length/2 - row < cmatrix_length))
					scale += cmatrix[j + cmatrix_length/2 - row];
			}
			for (i = 0; i<bytes; i++)
			{
				sum = 0;
				for (j = 0; j < y; j++)
				{
					if ((j >= row - cmatrix_length/2) &&
						(j <= row + cmatrix_length/2))
						sum += cur_col[j*bytes + i] * cmatrix[j];
				}
				dest_col[row*bytes + i] = (BYTE)(0.5f + sum / scale);
			}
		}
    }
	else
    {
		/* for the edge condition, we only use available info and scale to one */
		for (row = 0; row < cmatrix_middle; row++)
		{
			/* find scale factor */
			scale=0;
			for (j = cmatrix_middle - row; j<cmatrix_length; j++)
				scale += cmatrix[j];
			for (i = 0; i<bytes; i++)
			{
				sum = 0;
				for (j = cmatrix_middle - row; j<cmatrix_length; j++)
				{
					sum += cur_col[(row + j-cmatrix_middle)*bytes + i] * cmatrix[j];
				}
				dest_col[row*bytes + i] = (BYTE)(0.5f + sum / scale);
			}
		}
		/* go through each pixel in each col */
		dest_col_p = dest_col + row*bytes;
		for (; row < y-cmatrix_middle; row++)
		{
			cur_col_p = (row - cmatrix_middle) * bytes + cur_col;
			for (i = 0; i<bytes; i++)
			{
				sum = 0;
				cmatrix_p = cmatrix;
				cur_col_p1 = cur_col_p;
				ctable_p = ctable;
				for (j = cmatrix_length; j>0; j--)
				{
					sum += *(ctable_p + *cur_col_p1);
					cur_col_p1 += bytes;
					ctable_p += 256;
				}
				cur_col_p++;
				*(dest_col_p++) = (BYTE)(0.5f + sum);
			}
		}
		
		/* for the edge condition , we only use available info, and scale to one */
		for (; row < y; row++)
		{
			/* find scale factor */
			scale=0;
			for (j = 0; j< y-row + cmatrix_middle; j++)
				scale += cmatrix[j];
			for (i = 0; i<bytes; i++)
			{
				sum = 0;
				for (j = 0; j<y-row + cmatrix_middle; j++)
				{
					sum += cur_col[(row + j-cmatrix_middle)*bytes + i] * cmatrix[j];
				}
				dest_col[row*bytes + i] = (BYTE) (0.5f + sum / scale);
			}
		}
    }
}
////////////////////////////////////////////////////////////////////////////////
/* <nipper> */
bool CxImage::UnsharpMask(float radius /*= 5.0*/, float amount /*= 0.5*/, int threshold /*= 0*/)
{
	if (!pDib) return false;

	if (!(head.biBitCount == 24 || IsGrayScale()))
		return false;

	CxImage tmp(*this);

	CImageIterator itSrc(this);
	CImageIterator itDst(&tmp);

	// generate convolution matrix and make sure it's smaller than each dimension
	float *cmatrix = NULL;
	int cmatrix_length = gen_convolve_matrix(radius, &cmatrix);
	// generate lookup table
	float *ctable = gen_lookup_table(cmatrix, cmatrix_length);

	double dbScaler = 33.3/head.biHeight;

	// blur the rows
    for (int y=0;y<head.biHeight;y++)
	{
		if (info.nEscape) break;
		info.nProgress = (long)(y*dbScaler);

		blur_line(ctable, cmatrix, cmatrix_length, itSrc.GetRow(y), itDst.GetRow(y), head.biWidth, 3);
	}

	// blur the cols
    BYTE* cur_col = new BYTE[head.biHeight*3];
    BYTE* dest_col = new BYTE[head.biHeight*3];

	dbScaler = 33.3/head.biWidth;

	for (int x=0;x<head.biWidth;x++)
	{
		if (info.nEscape) break;
		info.nProgress = (long)(33.3+x*dbScaler);

		itSrc.GetCol(cur_col, x);
		itDst.GetCol(dest_col, x);
		blur_line(ctable, cmatrix, cmatrix_length, cur_col, dest_col, head.biHeight, 3);
		itSrc.SetCol(cur_col, x);
		itDst.SetCol(dest_col, x);
	}

	delete [] cur_col;
	delete [] dest_col;

	delete [] cmatrix;
	delete [] ctable;

	// these are used for the merging step 
	int diff;
	int value;

	dbScaler = 33.3/head.biHeight;
	
	// merge the source and destination (which currently contains
	// the blurred version) images
    for (y=0;y<head.biHeight;y++)
	{
		if (info.nEscape) break;
		info.nProgress = (long)(66.6+y*dbScaler);

		value = 0;
		// get source row
		BYTE* cur_row = itSrc.GetRow(y);
		// get dest row
		BYTE* dest_row = itDst.GetRow(y);
		// combine the two
		for (int u = 0; u < x; u++)
		{
			for (int v = 0; v < 3; v++)
			{
				diff = (cur_row[u*3+v] - dest_row[u*3+v]);
				// do tresholding
				if (abs (2 * diff) < threshold)
					diff = 0;
	
				value = int(cur_row[u*3+v] + amount * diff);

				if (value < 0) dest_row[u*3+v] =0;
				else if (value > 255) dest_row[u*3+v] = 255;
				else  dest_row[u*3+v] = value;
			}
		}
	}

	Transfer(tmp);

	return TRUE;
}
////////////////////////////////////////////////////////////////////////////////
bool CxImage::Lut(BYTE* pLut)
{
	if (!pDib || !pLut) return false;
	RGBQUAD color;

	double dbScaler;
	if (head.biClrUsed==0){

		long xmin,xmax,ymin,ymax;
		if (pSelection){
			xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
			ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
		} else {
			// faster loop for full image
			BYTE *iSrc=info.pImage;
			for(unsigned long i=0; i < head.biSizeImage ; i++){
				*iSrc++ = pLut[*iSrc];
			}
			return true;
		}

		dbScaler = 100.0/ymax;

		for(long y=ymin; y<ymax; y++){
			info.nProgress = (long)(y*dbScaler); //<Anatoly Ivasyuk>
			for(long x=xmin; x<xmax; x++){
#if CXIMAGE_SUPPORT_SELECTION
				if (SelectionIsInside(x,y))
#endif //CXIMAGE_SUPPORT_SELECTION
				{
					color = GetPixelColor(x,y);
					color.rgbRed = pLut[color.rgbRed];
					color.rgbGreen = pLut[color.rgbGreen];
					color.rgbBlue = pLut[color.rgbBlue];
					SetPixelColor(x,y,color);
				}
			}
		}
#if CXIMAGE_SUPPORT_SELECTION
	} else if (pSelection && (head.biBitCount==8) && IsGrayScale()){
		long xmin,xmax,ymin,ymax;
		xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
		ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;

		dbScaler = 100.0/ymax;
		for(long y=ymin; y<ymax; y++){
			info.nProgress = (long)(y*dbScaler);
			for(long x=xmin; x<xmax; x++){
				if (SelectionIsInside(x,y))
				{
					SetPixelIndex(x,y,pLut[GetPixelIndex(x,y)]);
				}
			}
		}
#endif //CXIMAGE_SUPPORT_SELECTION
	} else {
		for(DWORD j=0; j<head.biClrUsed; j++){
			color = GetPaletteColor((BYTE)j);
			color.rgbRed = pLut[color.rgbRed];
			color.rgbGreen = pLut[color.rgbGreen];
			color.rgbBlue = pLut[color.rgbBlue];
			SetPaletteColor((BYTE)j,color);
		}
	}
	return true;

}
////////////////////////////////////////////////////////////////////////////////
bool CxImage::Lut(BYTE* pLutR, BYTE* pLutG, BYTE* pLutB, BYTE* pLutA)
{
	if (!pDib || !pLutR || !pLutG || !pLutB) return false;
	RGBQUAD color;

	double dbScaler;
	if (head.biClrUsed==0){

		long xmin,xmax,ymin,ymax;
		if (pSelection){
			xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
			ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
		} else {
			xmin = ymin = 0;
			xmax = head.biWidth; ymax=head.biHeight;
		}

		dbScaler = 100.0/ymax;

		for(long y=ymin; y<ymax; y++){
			info.nProgress = (long)(y*dbScaler);
			for(long x=xmin; x<xmax; x++){
#if CXIMAGE_SUPPORT_SELECTION
				if (SelectionIsInside(x,y))
#endif //CXIMAGE_SUPPORT_SELECTION
				{
					color = GetPixelColor(x,y);
					color.rgbRed =   pLutR[color.rgbRed];
					color.rgbGreen = pLutG[color.rgbGreen];
					color.rgbBlue =  pLutB[color.rgbBlue];
					if (pLutA) color.rgbReserved=pLutA[color.rgbReserved];
					SetPixelColor(x,y,color,true);
				}
			}
		}
	} else {
		for(DWORD j=0; j<head.biClrUsed; j++){
			color = GetPaletteColor((BYTE)j);
			color.rgbRed =   pLutR[color.rgbRed];
			color.rgbGreen = pLutG[color.rgbGreen];
			color.rgbBlue =  pLutB[color.rgbBlue];
			SetPaletteColor((BYTE)j,color);
		}
	}

	return true;

}
////////////////////////////////////////////////////////////////////////////////
/*bool CxImage::FloodFill(int x, int y, RGBQUAD FillColor)
{
	//<JDL>
	if (!pDib) return false;
    FloodFill2(x,y,GetPixelColor(x,y),FillColor);
	return true;
}
////////////////////////////////////////////////////////////////////////////////
void CxImage::FloodFill2(int x, int y, RGBQUAD old_color, RGBQUAD new_color)
{
	// Fill in the actual pixels. 
	// Function steps recursively until it finds borders (color that is not old_color)
	if (!IsInside(x,y)) return;

	RGBQUAD r = GetPixelColor(x,y);
	COLORREF cr = RGB(r.rgbRed,r.rgbGreen,r.rgbBlue);

	if(cr == RGB(old_color.rgbRed,old_color.rgbGreen,old_color.rgbBlue)
		&& cr != RGB(new_color.rgbRed,new_color.rgbGreen,new_color.rgbBlue) ) {

		// the above if statement, after && is there to prevent
		// stack overflows.  The program will continue to find 
		// colors if you flood-fill an entire region (entire picture)

		SetPixelColor(x,y,new_color);

		FloodFill2((x+1),y,old_color,new_color);
		FloodFill2((x-1),y,old_color,new_color);
		FloodFill2(x,(y+1),old_color,new_color);
		FloodFill2(x,(y-1),old_color,new_color);
	}
}*/
///////////////////////////////////////////////////////////////////////////////
#endif //CXIMAGE_SUPPORT_DSP

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -