📄 dfstree.cpp
字号:
//DFSTree.cpp
//无向图的深度优先构造生成树
# include <iostream.h>
# include <malloc.h>
# include <conio.h>
# include <stdio.h>
# define INFINITY 1000
# define MAX_VERTEX_NUM 20
# define OK 1
# define TRUE 1
# define FALSE 0
typedef enum{DG,DN,UDG,UDN} GraphKind;
typedef int EType;
typedef int InfoType;
typedef int VertexType;
typedef int ElemType;
typedef struct ArcCell //定义 MGraph
{ EType adj;
InfoType *info;
}ArcCell,AdjMatrix[MAX_VERTEX_NUM][MAX_VERTEX_NUM];
typedef struct
{ VertexType vexs[MAX_VERTEX_NUM];
AdjMatrix arcs;
int vexnum,arcnum;
GraphKind kind;
}MGraph;
typedef struct CSNode //定义 CSNode
{ ElemType data;
struct CSNode *firstchild,*nextsibling;
}CSNode,*CSTree;
int LocateVex(MGraph G,int v) //确定v在G中的位置
{
return(v);
}
int CreatUDN(MGraph &G) //CreatUDN() 子函数
{ int i,j,k,v1,v2,w;
int IncInfo;
cout<<endl<<"Please input the number of G.vexnum 顶点数目 (eg, 4): ";
cin>>G.vexnum; //输入顶点数目
cout<<"Please input the number of G.arcnum 弧的数目 (eg, 4): ";
cin>>G.arcnum; //输入弧的数目
//cout<<"Please input IncInfo 弧的信息 (0 for none) : ";
printf("Please input IncInfo 弧的信息 (0 for none) : ");
//cin>>IncInfo; //输入弧的信息
scanf("%d",&IncInfo);
for(i=1;i<=G.vexnum;++i)
for(j=1;j<=G.vexnum;++j)
{ G.arcs[i][j].adj=INFINITY; //初始化邻接矩阵
G.arcs[i][j].info=NULL;
}
cout<<"Plese input 弧 arc(V1-->V2), For example: arc(1,3),arc(2,4)..."<<endl;
for(k=0;k<G.arcnum;++k) //构造邻接矩阵
{ cout<<endl<<"Please input the "<<k+1<<"th arc's v1 弧头 [1.."<<G.vexnum<<"] :";
cin>>v1; //输入弧头
cout<<"Please input the "<<k+1<<"th arc's v2 弧尾 [1.."<<G.vexnum<<"] :";
cin>>v2; //输入弧尾
cout<<"Please input the "<<k+1<<"th arc's weight 权 :";
cin>>w; //输入权
i=LocateVex(G,v1); //确定v1在G中的位置
j=LocateVex(G,v2); //确定v2在G中的位置
while(i<1||i>G.vexnum||j<1||j>G.vexnum) //如果弧头或弧尾不合法,重新输入
{ cout<<"Please input Again the "<<k+1<<"th arc's v1 弧头[1.."<<G.vexnum<<"] :";
cin>>v1;
cout<<"Please input Again the"<<k+1<<"th arc's v2 弧尾[11.."<<G.vexnum<<"] :";
cin>>v2;
cout<<"Please input Again the "<<k+1<<"th arc's weight 权 :";
cin>>w;
i=LocateVex(G,v1); //确定v1在G中的位置
j=LocateVex(G,v2); //确定v2在G中的位置
} //while end
G.arcs[i][j].adj=G.arcs[j][i].adj=w; //weight
if(IncInfo!=0)
{ G.arcs[i][j].info=&IncInfo;
}
} //for end
return (OK);
} //CreatUDN() end
void ShowMGraph(MGraph G) //输出图 G
{ int i,j;
for(i=1;i<=G.vexnum;++i)
for(j=1;j<=G.vexnum;++j)
if(G.arcs[i][j].adj!=INFINITY)
printf("\narc(%d,%d) weight=%d ",i,j,G.arcs[i][j].adj);
}
void DFSTree(MGraph G,int v,CSTree &T,int visited[MAX_VERTEX_NUM])
//从第v个顶点出发深度优先遍历G,建立以T为根的生成树
//T以孩子兄弟链表作为存储结构
{ int w,first;
CSTree p,q;
visited[v]=TRUE;
first=1;
for(w=1;w<=G.vexnum;++w)
if((G.arcs[v][w].adj!=INFINITY)&&(visited[w]!=1))
{ printf("\nArc(%d,%d)",v,w);
p=(CSTree)malloc(sizeof(CSNode)); //分配孩子结点
p->data=w;
p->firstchild=NULL;
p->nextsibling=NULL;
if(first) //w是v的第一个其他未被访问的邻接顶点
{ T=(CSTree)malloc(sizeof(CSNode));
T->firstchild=p;//是根的第一个孩子结点
first=FALSE;
} //if end
else //是上一个邻接顶点的右兄弟结点
q->nextsibling=p;
q=p;
DFSTree(G,w,q,visited); //从第w个顶点出发深度优先遍历图G,建立子生成树q
} //if end
} //DFSTree() end
void main() //main() 函数
{ MGraph G;
int first=TRUE;
CSTree T;
T=(CSTree)malloc(sizeof(CSNode));
int visited[MAX_VERTEX_NUM],v;
cout<<endl<<endl<<"DFSTree.cpp";
cout<<endl<<"==========="<<endl;
if(CreatUDN(G)) //构造图G
{ printf("\nCreate MGraph success !");
ShowMGraph(G);
}
for(v=1;v<=G.vexnum;++v)
visited[v]=0; //初始化visited[v]
cout<<endl<<endl<<"Create MiniSpanTree as follows:"<<endl;
for(v=1;v<=G.vexnum;++v)
if(!visited[v])
DFSTree(G,v,T,visited); //调用 DFSTree()
cout<<endl<<endl<<"...OK!...";
getch();
} //main() end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -