⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 smartsopc_flash_programmer.v

📁 nios 嵌入式系统基础教程实验 创建目标板FLASH编程
💻 V
📖 第 1 页 / 共 5 页
字号:
          cpu_0_instruction_master_dbs_rdv_counter <= 0;
      else if (dbs_rdv_count_enable)
          cpu_0_instruction_master_dbs_rdv_counter <= cpu_0_instruction_master_next_dbs_rdv_counter;
    end


  //dbs rdv counter overflow, which is an e_assign
  assign dbs_rdv_counter_overflow = cpu_0_instruction_master_dbs_rdv_counter[1] & ~cpu_0_instruction_master_next_dbs_rdv_counter[1];

  //pre dbs count enable, which is an e_mux
  assign pre_dbs_count_enable = (cpu_0_instruction_master_granted_payload_buffer_s1 & cpu_0_instruction_master_read & 1 & 1) |
    ((cpu_0_instruction_master_granted_cfi_flash_0_s1 & cpu_0_instruction_master_read & 1 & 1 & ({cfi_flash_0_s1_wait_counter_eq_0 & ~d1_tri_state_bridge_0_avalon_slave_end_xfer})));


//synthesis translate_off
//////////////// SIMULATION-ONLY CONTENTS
  //cpu_0_instruction_master_address check against wait, which is an e_register
  always @(posedge clk or negedge reset_n)
    begin
      if (reset_n == 0)
          cpu_0_instruction_master_address_last_time <= 0;
      else if (1)
          cpu_0_instruction_master_address_last_time <= cpu_0_instruction_master_address;
    end


  //cpu_0/instruction_master waited last time, which is an e_register
  always @(posedge clk or negedge reset_n)
    begin
      if (reset_n == 0)
          active_and_waiting_last_time <= 0;
      else if (1)
          active_and_waiting_last_time <= cpu_0_instruction_master_waitrequest & (cpu_0_instruction_master_read);
    end


  //cpu_0_instruction_master_address matches last port_name, which is an e_process
  always @(active_and_waiting_last_time or cpu_0_instruction_master_address or cpu_0_instruction_master_address_last_time)
    begin
      if (active_and_waiting_last_time & (cpu_0_instruction_master_address != cpu_0_instruction_master_address_last_time))
        begin
          $write("%0d ns: cpu_0_instruction_master_address did not heed wait!!!", $time);
          $stop;
        end
    end


  //cpu_0_instruction_master_read check against wait, which is an e_register
  always @(posedge clk or negedge reset_n)
    begin
      if (reset_n == 0)
          cpu_0_instruction_master_read_last_time <= 0;
      else if (1)
          cpu_0_instruction_master_read_last_time <= cpu_0_instruction_master_read;
    end


  //cpu_0_instruction_master_read matches last port_name, which is an e_process
  always @(active_and_waiting_last_time or cpu_0_instruction_master_read or cpu_0_instruction_master_read_last_time)
    begin
      if (active_and_waiting_last_time & (cpu_0_instruction_master_read != cpu_0_instruction_master_read_last_time))
        begin
          $write("%0d ns: cpu_0_instruction_master_read did not heed wait!!!", $time);
          $stop;
        end
    end



//////////////// END SIMULATION-ONLY CONTENTS

//synthesis translate_on

  // synthesis attribute cpu_0_instruction_master_arbitrator auto_dissolve FALSE

endmodule


module data_RAM_s1_arbitrator (
                                // inputs:
                                 clk,
                                 cpu_0_data_master_address_to_slave,
                                 cpu_0_data_master_byteenable,
                                 cpu_0_data_master_read,
                                 cpu_0_data_master_waitrequest,
                                 cpu_0_data_master_write,
                                 cpu_0_data_master_writedata,
                                 cpu_0_instruction_master_address_to_slave,
                                 cpu_0_instruction_master_latency_counter,
                                 cpu_0_instruction_master_read,
                                 data_RAM_s1_readdata,
                                 reset_n,

                                // outputs:
                                 cpu_0_data_master_granted_data_RAM_s1,
                                 cpu_0_data_master_qualified_request_data_RAM_s1,
                                 cpu_0_data_master_read_data_valid_data_RAM_s1,
                                 cpu_0_data_master_requests_data_RAM_s1,
                                 cpu_0_instruction_master_granted_data_RAM_s1,
                                 cpu_0_instruction_master_qualified_request_data_RAM_s1,
                                 cpu_0_instruction_master_read_data_valid_data_RAM_s1,
                                 cpu_0_instruction_master_requests_data_RAM_s1,
                                 d1_data_RAM_s1_end_xfer,
                                 data_RAM_s1_address,
                                 data_RAM_s1_byteenable,
                                 data_RAM_s1_chipselect,
                                 data_RAM_s1_clken,
                                 data_RAM_s1_readdata_from_sa,
                                 data_RAM_s1_write,
                                 data_RAM_s1_writedata,
                                 registered_cpu_0_data_master_read_data_valid_data_RAM_s1
                              );

  output           cpu_0_data_master_granted_data_RAM_s1;
  output           cpu_0_data_master_qualified_request_data_RAM_s1;
  output           cpu_0_data_master_read_data_valid_data_RAM_s1;
  output           cpu_0_data_master_requests_data_RAM_s1;
  output           cpu_0_instruction_master_granted_data_RAM_s1;
  output           cpu_0_instruction_master_qualified_request_data_RAM_s1;
  output           cpu_0_instruction_master_read_data_valid_data_RAM_s1;
  output           cpu_0_instruction_master_requests_data_RAM_s1;
  output           d1_data_RAM_s1_end_xfer;
  output  [  7: 0] data_RAM_s1_address;
  output  [  3: 0] data_RAM_s1_byteenable;
  output           data_RAM_s1_chipselect;
  output           data_RAM_s1_clken;
  output  [ 31: 0] data_RAM_s1_readdata_from_sa;
  output           data_RAM_s1_write;
  output  [ 31: 0] data_RAM_s1_writedata;
  output           registered_cpu_0_data_master_read_data_valid_data_RAM_s1;
  input            clk;
  input   [ 23: 0] cpu_0_data_master_address_to_slave;
  input   [  3: 0] cpu_0_data_master_byteenable;
  input            cpu_0_data_master_read;
  input            cpu_0_data_master_waitrequest;
  input            cpu_0_data_master_write;
  input   [ 31: 0] cpu_0_data_master_writedata;
  input   [ 23: 0] cpu_0_instruction_master_address_to_slave;
  input   [  1: 0] cpu_0_instruction_master_latency_counter;
  input            cpu_0_instruction_master_read;
  input   [ 31: 0] data_RAM_s1_readdata;
  input            reset_n;

  wire             cpu_0_data_master_arbiterlock;
  wire             cpu_0_data_master_continuerequest;
  wire             cpu_0_data_master_granted_data_RAM_s1;
  wire             cpu_0_data_master_qualified_request_data_RAM_s1;
  wire             cpu_0_data_master_read_data_valid_data_RAM_s1;
  reg              cpu_0_data_master_read_data_valid_data_RAM_s1_shift_register;
  wire             cpu_0_data_master_read_data_valid_data_RAM_s1_shift_register_in;
  wire             cpu_0_data_master_requests_data_RAM_s1;
  wire             cpu_0_data_master_saved_grant_data_RAM_s1;
  wire             cpu_0_instruction_master_arbiterlock;
  wire             cpu_0_instruction_master_continuerequest;
  wire             cpu_0_instruction_master_granted_data_RAM_s1;
  wire             cpu_0_instruction_master_qualified_request_data_RAM_s1;
  wire             cpu_0_instruction_master_read_data_valid_data_RAM_s1;
  reg              cpu_0_instruction_master_read_data_valid_data_RAM_s1_shift_register;
  wire             cpu_0_instruction_master_read_data_valid_data_RAM_s1_shift_register_in;
  wire             cpu_0_instruction_master_requests_data_RAM_s1;
  wire             cpu_0_instruction_master_saved_grant_data_RAM_s1;
  reg              d1_data_RAM_s1_end_xfer;
  reg              d1_reasons_to_wait;
  wire    [  7: 0] data_RAM_s1_address;
  wire             data_RAM_s1_allgrants;
  wire             data_RAM_s1_allow_new_arb_cycle;
  wire             data_RAM_s1_any_continuerequest;
  reg     [  1: 0] data_RAM_s1_arb_addend;
  wire             data_RAM_s1_arb_counter_enable;
  reg     [  1: 0] data_RAM_s1_arb_share_counter;
  wire    [  1: 0] data_RAM_s1_arb_share_counter_next_value;
  wire    [  1: 0] data_RAM_s1_arb_share_set_values;
  wire    [  1: 0] data_RAM_s1_arb_winner;
  wire             data_RAM_s1_arbitration_holdoff_internal;
  wire             data_RAM_s1_beginbursttransfer_internal;
  wire             data_RAM_s1_begins_xfer;
  wire    [  3: 0] data_RAM_s1_byteenable;
  wire             data_RAM_s1_chipselect;
  wire    [  3: 0] data_RAM_s1_chosen_master_double_vector;
  wire    [  1: 0] data_RAM_s1_chosen_master_rot_left;
  wire             data_RAM_s1_clken;
  wire             data_RAM_s1_end_xfer;
  wire             data_RAM_s1_firsttransfer;
  wire    [  1: 0] data_RAM_s1_grant_vector;
  wire             data_RAM_s1_in_a_read_cycle;
  wire             data_RAM_s1_in_a_write_cycle;
  wire    [  1: 0] data_RAM_s1_master_qreq_vector;
  wire    [ 31: 0] data_RAM_s1_readdata_from_sa;
  reg     [  1: 0] data_RAM_s1_saved_chosen_master_vector;
  reg              data_RAM_s1_slavearbiterlockenable;
  wire             data_RAM_s1_waits_for_read;
  wire             data_RAM_s1_waits_for_write;
  wire             data_RAM_s1_write;
  wire    [ 31: 0] data_RAM_s1_writedata;
  wire             in_a_read_cycle;
  wire             in_a_write_cycle;
  reg              last_cycle_cpu_0_data_master_granted_slave_data_RAM_s1;
  reg              last_cycle_cpu_0_instruction_master_granted_slave_data_RAM_s1;
  wire             p1_cpu_0_data_master_read_data_valid_data_RAM_s1_shift_register;
  wire             p1_cpu_0_instruction_master_read_data_valid_data_RAM_s1_shift_register;
  wire             registered_cpu_0_data_master_read_data_valid_data_RAM_s1;
  wire             wait_for_data_RAM_s1_counter;
  always @(posedge clk or negedge reset_n)
    begin
      if (reset_n == 0)
          d1_reasons_to_wait <= 0;
      else if (1)
          d1_reasons_to_wait <= ~data_RAM_s1_end_xfer;
    end


  assign data_RAM_s1_begins_xfer = ~d1_reasons_to_wait & ((cpu_0_data_master_qualified_request_data_RAM_s1 | cpu_0_instruction_master_qualified_request_data_RAM_s1));
  //assign data_RAM_s1_readdata_from_sa = data_RAM_s1_readdata so that symbol knows where to group signals which may go to master only, which is an e_assign
  assign data_RAM_s1_readdata_from_sa = data_RAM_s1_readdata;

  assign cpu_0_data_master_requests_data_RAM_s1 = ({cpu_0_data_master_address_to_slave[23 : 10] , 10'b0} == 24'h10000) & (cpu_0_data_master_read | cpu_0_data_master_write);
  //registered rdv signal_name registered_cpu_0_data_master_read_data_valid_data_RAM_s1 assignment, which is an e_assign
  assign registered_cpu_0_data_master_read_data_valid_data_RAM_s1 = cpu_0_data_master_read_data_valid_data_RAM_s1_shift_register_in;

  //data_RAM_s1_arb_share_counter set values, which is an e_

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -