📄 smartsopc_flash_programmer.v
字号:
cpu_0_instruction_master_dbs_rdv_counter <= 0;
else if (dbs_rdv_count_enable)
cpu_0_instruction_master_dbs_rdv_counter <= cpu_0_instruction_master_next_dbs_rdv_counter;
end
//dbs rdv counter overflow, which is an e_assign
assign dbs_rdv_counter_overflow = cpu_0_instruction_master_dbs_rdv_counter[1] & ~cpu_0_instruction_master_next_dbs_rdv_counter[1];
//pre dbs count enable, which is an e_mux
assign pre_dbs_count_enable = (cpu_0_instruction_master_granted_payload_buffer_s1 & cpu_0_instruction_master_read & 1 & 1) |
((cpu_0_instruction_master_granted_cfi_flash_0_s1 & cpu_0_instruction_master_read & 1 & 1 & ({cfi_flash_0_s1_wait_counter_eq_0 & ~d1_tri_state_bridge_0_avalon_slave_end_xfer})));
//synthesis translate_off
//////////////// SIMULATION-ONLY CONTENTS
//cpu_0_instruction_master_address check against wait, which is an e_register
always @(posedge clk or negedge reset_n)
begin
if (reset_n == 0)
cpu_0_instruction_master_address_last_time <= 0;
else if (1)
cpu_0_instruction_master_address_last_time <= cpu_0_instruction_master_address;
end
//cpu_0/instruction_master waited last time, which is an e_register
always @(posedge clk or negedge reset_n)
begin
if (reset_n == 0)
active_and_waiting_last_time <= 0;
else if (1)
active_and_waiting_last_time <= cpu_0_instruction_master_waitrequest & (cpu_0_instruction_master_read);
end
//cpu_0_instruction_master_address matches last port_name, which is an e_process
always @(active_and_waiting_last_time or cpu_0_instruction_master_address or cpu_0_instruction_master_address_last_time)
begin
if (active_and_waiting_last_time & (cpu_0_instruction_master_address != cpu_0_instruction_master_address_last_time))
begin
$write("%0d ns: cpu_0_instruction_master_address did not heed wait!!!", $time);
$stop;
end
end
//cpu_0_instruction_master_read check against wait, which is an e_register
always @(posedge clk or negedge reset_n)
begin
if (reset_n == 0)
cpu_0_instruction_master_read_last_time <= 0;
else if (1)
cpu_0_instruction_master_read_last_time <= cpu_0_instruction_master_read;
end
//cpu_0_instruction_master_read matches last port_name, which is an e_process
always @(active_and_waiting_last_time or cpu_0_instruction_master_read or cpu_0_instruction_master_read_last_time)
begin
if (active_and_waiting_last_time & (cpu_0_instruction_master_read != cpu_0_instruction_master_read_last_time))
begin
$write("%0d ns: cpu_0_instruction_master_read did not heed wait!!!", $time);
$stop;
end
end
//////////////// END SIMULATION-ONLY CONTENTS
//synthesis translate_on
// synthesis attribute cpu_0_instruction_master_arbitrator auto_dissolve FALSE
endmodule
module data_RAM_s1_arbitrator (
// inputs:
clk,
cpu_0_data_master_address_to_slave,
cpu_0_data_master_byteenable,
cpu_0_data_master_read,
cpu_0_data_master_waitrequest,
cpu_0_data_master_write,
cpu_0_data_master_writedata,
cpu_0_instruction_master_address_to_slave,
cpu_0_instruction_master_latency_counter,
cpu_0_instruction_master_read,
data_RAM_s1_readdata,
reset_n,
// outputs:
cpu_0_data_master_granted_data_RAM_s1,
cpu_0_data_master_qualified_request_data_RAM_s1,
cpu_0_data_master_read_data_valid_data_RAM_s1,
cpu_0_data_master_requests_data_RAM_s1,
cpu_0_instruction_master_granted_data_RAM_s1,
cpu_0_instruction_master_qualified_request_data_RAM_s1,
cpu_0_instruction_master_read_data_valid_data_RAM_s1,
cpu_0_instruction_master_requests_data_RAM_s1,
d1_data_RAM_s1_end_xfer,
data_RAM_s1_address,
data_RAM_s1_byteenable,
data_RAM_s1_chipselect,
data_RAM_s1_clken,
data_RAM_s1_readdata_from_sa,
data_RAM_s1_write,
data_RAM_s1_writedata,
registered_cpu_0_data_master_read_data_valid_data_RAM_s1
);
output cpu_0_data_master_granted_data_RAM_s1;
output cpu_0_data_master_qualified_request_data_RAM_s1;
output cpu_0_data_master_read_data_valid_data_RAM_s1;
output cpu_0_data_master_requests_data_RAM_s1;
output cpu_0_instruction_master_granted_data_RAM_s1;
output cpu_0_instruction_master_qualified_request_data_RAM_s1;
output cpu_0_instruction_master_read_data_valid_data_RAM_s1;
output cpu_0_instruction_master_requests_data_RAM_s1;
output d1_data_RAM_s1_end_xfer;
output [ 7: 0] data_RAM_s1_address;
output [ 3: 0] data_RAM_s1_byteenable;
output data_RAM_s1_chipselect;
output data_RAM_s1_clken;
output [ 31: 0] data_RAM_s1_readdata_from_sa;
output data_RAM_s1_write;
output [ 31: 0] data_RAM_s1_writedata;
output registered_cpu_0_data_master_read_data_valid_data_RAM_s1;
input clk;
input [ 23: 0] cpu_0_data_master_address_to_slave;
input [ 3: 0] cpu_0_data_master_byteenable;
input cpu_0_data_master_read;
input cpu_0_data_master_waitrequest;
input cpu_0_data_master_write;
input [ 31: 0] cpu_0_data_master_writedata;
input [ 23: 0] cpu_0_instruction_master_address_to_slave;
input [ 1: 0] cpu_0_instruction_master_latency_counter;
input cpu_0_instruction_master_read;
input [ 31: 0] data_RAM_s1_readdata;
input reset_n;
wire cpu_0_data_master_arbiterlock;
wire cpu_0_data_master_continuerequest;
wire cpu_0_data_master_granted_data_RAM_s1;
wire cpu_0_data_master_qualified_request_data_RAM_s1;
wire cpu_0_data_master_read_data_valid_data_RAM_s1;
reg cpu_0_data_master_read_data_valid_data_RAM_s1_shift_register;
wire cpu_0_data_master_read_data_valid_data_RAM_s1_shift_register_in;
wire cpu_0_data_master_requests_data_RAM_s1;
wire cpu_0_data_master_saved_grant_data_RAM_s1;
wire cpu_0_instruction_master_arbiterlock;
wire cpu_0_instruction_master_continuerequest;
wire cpu_0_instruction_master_granted_data_RAM_s1;
wire cpu_0_instruction_master_qualified_request_data_RAM_s1;
wire cpu_0_instruction_master_read_data_valid_data_RAM_s1;
reg cpu_0_instruction_master_read_data_valid_data_RAM_s1_shift_register;
wire cpu_0_instruction_master_read_data_valid_data_RAM_s1_shift_register_in;
wire cpu_0_instruction_master_requests_data_RAM_s1;
wire cpu_0_instruction_master_saved_grant_data_RAM_s1;
reg d1_data_RAM_s1_end_xfer;
reg d1_reasons_to_wait;
wire [ 7: 0] data_RAM_s1_address;
wire data_RAM_s1_allgrants;
wire data_RAM_s1_allow_new_arb_cycle;
wire data_RAM_s1_any_continuerequest;
reg [ 1: 0] data_RAM_s1_arb_addend;
wire data_RAM_s1_arb_counter_enable;
reg [ 1: 0] data_RAM_s1_arb_share_counter;
wire [ 1: 0] data_RAM_s1_arb_share_counter_next_value;
wire [ 1: 0] data_RAM_s1_arb_share_set_values;
wire [ 1: 0] data_RAM_s1_arb_winner;
wire data_RAM_s1_arbitration_holdoff_internal;
wire data_RAM_s1_beginbursttransfer_internal;
wire data_RAM_s1_begins_xfer;
wire [ 3: 0] data_RAM_s1_byteenable;
wire data_RAM_s1_chipselect;
wire [ 3: 0] data_RAM_s1_chosen_master_double_vector;
wire [ 1: 0] data_RAM_s1_chosen_master_rot_left;
wire data_RAM_s1_clken;
wire data_RAM_s1_end_xfer;
wire data_RAM_s1_firsttransfer;
wire [ 1: 0] data_RAM_s1_grant_vector;
wire data_RAM_s1_in_a_read_cycle;
wire data_RAM_s1_in_a_write_cycle;
wire [ 1: 0] data_RAM_s1_master_qreq_vector;
wire [ 31: 0] data_RAM_s1_readdata_from_sa;
reg [ 1: 0] data_RAM_s1_saved_chosen_master_vector;
reg data_RAM_s1_slavearbiterlockenable;
wire data_RAM_s1_waits_for_read;
wire data_RAM_s1_waits_for_write;
wire data_RAM_s1_write;
wire [ 31: 0] data_RAM_s1_writedata;
wire in_a_read_cycle;
wire in_a_write_cycle;
reg last_cycle_cpu_0_data_master_granted_slave_data_RAM_s1;
reg last_cycle_cpu_0_instruction_master_granted_slave_data_RAM_s1;
wire p1_cpu_0_data_master_read_data_valid_data_RAM_s1_shift_register;
wire p1_cpu_0_instruction_master_read_data_valid_data_RAM_s1_shift_register;
wire registered_cpu_0_data_master_read_data_valid_data_RAM_s1;
wire wait_for_data_RAM_s1_counter;
always @(posedge clk or negedge reset_n)
begin
if (reset_n == 0)
d1_reasons_to_wait <= 0;
else if (1)
d1_reasons_to_wait <= ~data_RAM_s1_end_xfer;
end
assign data_RAM_s1_begins_xfer = ~d1_reasons_to_wait & ((cpu_0_data_master_qualified_request_data_RAM_s1 | cpu_0_instruction_master_qualified_request_data_RAM_s1));
//assign data_RAM_s1_readdata_from_sa = data_RAM_s1_readdata so that symbol knows where to group signals which may go to master only, which is an e_assign
assign data_RAM_s1_readdata_from_sa = data_RAM_s1_readdata;
assign cpu_0_data_master_requests_data_RAM_s1 = ({cpu_0_data_master_address_to_slave[23 : 10] , 10'b0} == 24'h10000) & (cpu_0_data_master_read | cpu_0_data_master_write);
//registered rdv signal_name registered_cpu_0_data_master_read_data_valid_data_RAM_s1 assignment, which is an e_assign
assign registered_cpu_0_data_master_read_data_valid_data_RAM_s1 = cpu_0_data_master_read_data_valid_data_RAM_s1_shift_register_in;
//data_RAM_s1_arb_share_counter set values, which is an e_
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -